Sparsely connected autoencoder

Kavya Gupta, A. Majumdar
{"title":"Sparsely connected autoencoder","authors":"Kavya Gupta, A. Majumdar","doi":"10.1109/IJCNN.2016.7727437","DOIUrl":null,"url":null,"abstract":"This work proposes to learn autoencoders with sparse connections. Prior studies on autoencoders enforced sparsity on the neuronal activity; these are different from our proposed approach - we learn sparse connections. Sparsity in connections helps in learning (and keeping) the important relations while trimming the irrelevant ones. We have tested the performance of our proposed method on two tasks - classification and denoising. For classification we have compared against stacked autneencoders, contractive autoencoders, deep belief network, sparse deep neural network and optimal brain damage neural network; the denoising performance was compared against denoising autoencoder and sparse (activity) autoencoder. In both the tasks our proposed method yields superior results.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This work proposes to learn autoencoders with sparse connections. Prior studies on autoencoders enforced sparsity on the neuronal activity; these are different from our proposed approach - we learn sparse connections. Sparsity in connections helps in learning (and keeping) the important relations while trimming the irrelevant ones. We have tested the performance of our proposed method on two tasks - classification and denoising. For classification we have compared against stacked autneencoders, contractive autoencoders, deep belief network, sparse deep neural network and optimal brain damage neural network; the denoising performance was compared against denoising autoencoder and sparse (activity) autoencoder. In both the tasks our proposed method yields superior results.
稀疏连接的自动编码器
本工作提出学习具有稀疏连接的自编码器。先前对自编码器的研究对神经元的活动施加了稀疏性;这与我们提出的方法不同——我们学习稀疏连接。连接的稀疏性有助于学习(并保持)重要的关系,同时修剪不相关的关系。我们在分类和去噪两个任务上测试了我们提出的方法的性能。在分类方面,我们比较了堆叠式自编码器、收缩式自编码器、深度信念网络、稀疏深度神经网络和最优脑损伤神经网络;对比了去噪自编码器和稀疏(活动)自编码器的去噪性能。在这两个任务中,我们提出的方法都产生了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信