{"title":"Matrix engine for signal processing applications using the logarithmic number system","authors":"E. Chester, J. N. Coleman","doi":"10.1109/ASAP.2002.1030730","DOIUrl":null,"url":null,"abstract":"An architecture design is presented for a device based upon the logarithmic number system (LNS) that is capable of performing general matrix and complex arithmetic, with features useful for DSP system-on-chip applications. A modified LNS addition/subtraction unit is employed in multiple execution units to achieve a maximum single-precision floating-point (FP) equivalent throughput of 3.2 Gflop/s at a clock frequency of 200 MHz. Each execution unit is capable of computing functions of the form (ab + cd)/sup e/ for e /spl isin/ {/spl plusmn/0.5, /spl plusmn/1, /spl plusmn/2} in a 5-stage arithmetic pipeline and returning a result every cycle, yielding a considerable per-cycle improvement over both floating- and fixed-point systems. Comparisons with existing devices and a single floating-point unit are given.","PeriodicalId":424082,"journal":{"name":"Proceedings IEEE International Conference on Application- Specific Systems, Architectures, and Processors","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application- Specific Systems, Architectures, and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2002.1030730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
An architecture design is presented for a device based upon the logarithmic number system (LNS) that is capable of performing general matrix and complex arithmetic, with features useful for DSP system-on-chip applications. A modified LNS addition/subtraction unit is employed in multiple execution units to achieve a maximum single-precision floating-point (FP) equivalent throughput of 3.2 Gflop/s at a clock frequency of 200 MHz. Each execution unit is capable of computing functions of the form (ab + cd)/sup e/ for e /spl isin/ {/spl plusmn/0.5, /spl plusmn/1, /spl plusmn/2} in a 5-stage arithmetic pipeline and returning a result every cycle, yielding a considerable per-cycle improvement over both floating- and fixed-point systems. Comparisons with existing devices and a single floating-point unit are given.