Maximum likelihood diffusive source localization based on binary observations

Y. Levinbook, T. Wong
{"title":"Maximum likelihood diffusive source localization based on binary observations","authors":"Y. Levinbook, T. Wong","doi":"10.1109/ACSSC.2004.1399291","DOIUrl":null,"url":null,"abstract":"In this paper, we construct the maximum likelihood (ML) estimator of diffusive source location based on binary observations. We utilize two different estimation approaches, ML estimation based on all the observations (i.e.. batch processing) and approximated ML estimation using only new observations and the previous estimate (i.e., real time processing). The performance of these estimators are compared with theoretical bounds and are shown to achieve excellent performance.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we construct the maximum likelihood (ML) estimator of diffusive source location based on binary observations. We utilize two different estimation approaches, ML estimation based on all the observations (i.e.. batch processing) and approximated ML estimation using only new observations and the previous estimate (i.e., real time processing). The performance of these estimators are compared with theoretical bounds and are shown to achieve excellent performance.
基于二元观测的最大似然扩散源定位
本文基于二元观测构造了扩散源位置的极大似然估计量。我们使用两种不同的估计方法,基于所有观测值的ML估计(即…批处理)和仅使用新观察值和先前估计(即实时处理)的近似ML估计。将这些估计器的性能与理论边界进行了比较,结果表明它们具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信