Dispersion Analysis of Stabilized Finite Element Methods for Acoustic Fluid-Structure Interaction

L. Thompson, S. Sankar
{"title":"Dispersion Analysis of Stabilized Finite Element Methods for Acoustic Fluid-Structure Interaction","authors":"L. Thompson, S. Sankar","doi":"10.1115/imece2000-1592","DOIUrl":null,"url":null,"abstract":"\n The application of stabilized finite element methods to model the vibration of elastic plates coupled with an acoustic fluid medium is considered. New stabilized methods based on the Hellinger-Reissner variational principle with a generalized least-squares modification are developed which yield improvement in accuracy over the Galerkin and Galerkin Generalized Least Squares (GGLS) finite element methods for both in vacuo and acoustic fluid-loaded Reissner-Mindlin plates. Through judicious selection of design parameters this formulation provides a consistent framework for enhancing the accuracy of mixed Reissner-Mindlin plate elements. Combined with stabilization methods for the acoustic fluid, the method presents a new framework for accurate modeling of acoustic fluid-loaded structures. The technique of complex wave-number dispersion analysis is used to examine the accuracy of the discretized system in the representation of free-waves for fluid-loaded plates. The influence of different finite element approximations for the fluid-loaded plate system are examined and clarified. Improved methods are designed such that the finite element dispersion relations closely match each branch of the complex wavenumber loci for fluid-loaded plates. Comparisons of finite element dispersion relations demonstrate the superiority of the hybrid least-squares (HLS) plate elements combined with stabilized methods for the fluid over standard Galerkin methods with mixed interpolation and shear projection (MITC4) and GGLS methods.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of stabilized finite element methods to model the vibration of elastic plates coupled with an acoustic fluid medium is considered. New stabilized methods based on the Hellinger-Reissner variational principle with a generalized least-squares modification are developed which yield improvement in accuracy over the Galerkin and Galerkin Generalized Least Squares (GGLS) finite element methods for both in vacuo and acoustic fluid-loaded Reissner-Mindlin plates. Through judicious selection of design parameters this formulation provides a consistent framework for enhancing the accuracy of mixed Reissner-Mindlin plate elements. Combined with stabilization methods for the acoustic fluid, the method presents a new framework for accurate modeling of acoustic fluid-loaded structures. The technique of complex wave-number dispersion analysis is used to examine the accuracy of the discretized system in the representation of free-waves for fluid-loaded plates. The influence of different finite element approximations for the fluid-loaded plate system are examined and clarified. Improved methods are designed such that the finite element dispersion relations closely match each branch of the complex wavenumber loci for fluid-loaded plates. Comparisons of finite element dispersion relations demonstrate the superiority of the hybrid least-squares (HLS) plate elements combined with stabilized methods for the fluid over standard Galerkin methods with mixed interpolation and shear projection (MITC4) and GGLS methods.
声流固耦合稳定有限元法的色散分析
考虑用稳定有限元法模拟弹性板与声流体介质耦合时的振动。本文提出了一种基于Hellinger-Reissner变分原理和广义最小二乘修正的稳定方法,该方法对真空板和声流体加载的Reissner-Mindlin板的稳定精度优于Galerkin和Galerkin广义最小二乘(GGLS)有限元方法。通过合理选择设计参数,该公式为提高混合Reissner-Mindlin板单元的精度提供了一致的框架。该方法与声流体稳定方法相结合,为声流体加载结构的精确建模提供了新的框架。采用复波数色散分析技术,检验了离散化系统对流载板自由波表示的准确性。研究并阐明了不同有限元近似对流载板系统的影响。设计了改进的方法,使有限元色散关系与流体加载板复波数轨迹的每个分支紧密匹配。有限元色散关系的比较表明,混合最小二乘(HLS)板单元结合稳定方法比混合插值和剪切投影的标准Galerkin方法(MITC4)和GGLS方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信