Large-Scale Multi-Area State Estimation from Phasor Measurement Units Utilizing Factor Graphs

M. Cosovic, D. Vukobratović
{"title":"Large-Scale Multi-Area State Estimation from Phasor Measurement Units Utilizing Factor Graphs","authors":"M. Cosovic, D. Vukobratović","doi":"10.1109/EUROCON.2019.8861745","DOIUrl":null,"url":null,"abstract":"We propose a linear state estimation (SE) model with complex coefficients and variables suitable for processing large-scale data in electric power systems observable by phasor measurement units. The presented model is based on factor graphs and solved using the belief propagation (BP) algorithm. The proposed algorithm is placed in the non-overlapping multi-area SE scenario without a central coordinator. The communication between areas is asynchronous, where neighboring areas exchange only “beliefs” about specific state variables. Presented architecture directly exploits system sparsity, can be flexibly paralellized and results in substantially lower computational complexity compared to traditional SE solutions. Finally, we discuss performances of the BP-based SE algorithm using power systems with 118, 1354 and 9241 buses.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"444 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a linear state estimation (SE) model with complex coefficients and variables suitable for processing large-scale data in electric power systems observable by phasor measurement units. The presented model is based on factor graphs and solved using the belief propagation (BP) algorithm. The proposed algorithm is placed in the non-overlapping multi-area SE scenario without a central coordinator. The communication between areas is asynchronous, where neighboring areas exchange only “beliefs” about specific state variables. Presented architecture directly exploits system sparsity, can be flexibly paralellized and results in substantially lower computational complexity compared to traditional SE solutions. Finally, we discuss performances of the BP-based SE algorithm using power systems with 118, 1354 and 9241 buses.
基于因子图的相量测量单元的大规模多区域状态估计
提出了一种具有复系数和复变量的线性状态估计模型,适用于处理由相量测量单元观测到的电力系统大规模数据。该模型基于因子图,采用信念传播(BP)算法求解。该算法被放置在无中心协调器的无重叠多区域SE场景中。区域之间的通信是异步的,相邻区域只交换关于特定状态变量的“信念”。所提出的体系结构直接利用了系统稀疏性,可以灵活地并行化,与传统的SE解决方案相比,计算复杂性大大降低。最后,我们讨论了基于bp的SE算法在118、1354和9241母线的电力系统中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信