Introduction to Symbolic 2-Plithogenic Probability Theory

M. B. Zeina, Nizar Altounji, Mohammad Abobala, Yasin Karmouta
{"title":"Introduction to Symbolic 2-Plithogenic Probability Theory","authors":"M. B. Zeina, Nizar Altounji, Mohammad Abobala, Yasin Karmouta","doi":"10.54216/gjmsa.070202","DOIUrl":null,"url":null,"abstract":"In this paper we present for the first time the concept of symbolic plithogenic random variables and study its properties including expected value and variance. We build the plithogenic formal form of two important distributions that are exponential and uniform distributions. We find its probability density function and cumulative distribution function in its plithogenic form. We also derived its expected values and variance and the formulas of its random numbers generating. We finally present the fundamental form of plithogenic probability density and cumulative distribution functions. All the theorems were proved depending on algebraic approach using isomorphisms. This paper can be considered the base of symbolic plithogenic probability theory.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.070202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present for the first time the concept of symbolic plithogenic random variables and study its properties including expected value and variance. We build the plithogenic formal form of two important distributions that are exponential and uniform distributions. We find its probability density function and cumulative distribution function in its plithogenic form. We also derived its expected values and variance and the formulas of its random numbers generating. We finally present the fundamental form of plithogenic probability density and cumulative distribution functions. All the theorems were proved depending on algebraic approach using isomorphisms. This paper can be considered the base of symbolic plithogenic probability theory.
符号2-生成概率论导论
本文首次提出了符号生型随机变量的概念,研究了符号生型随机变量的期望值和方差等性质。我们建立了指数分布和均匀分布这两个重要分布的上生形式。得到了它的概率密度函数和累积分布函数。我们还推导了它的期望值和方差以及它的随机数产生的公式。最后给出了成矿概率密度和累积分布函数的基本形式。利用同构的代数方法证明了所有的定理。本文可视为符号成矿概率论的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信