Calibration of thermal sensors using BP neural network and SVM

Wenqing Xie, Le Yin, Maojiao Ye
{"title":"Calibration of thermal sensors using BP neural network and SVM","authors":"Wenqing Xie, Le Yin, Maojiao Ye","doi":"10.1109/CCDC52312.2021.9602045","DOIUrl":null,"url":null,"abstract":"In this paper, the influences of measuring distance and ambient temperature on the measurement accuracy of thermal sensors are explored through experiment. The data collected during the experiment are analyzed and used to train two machine learning models, i.e., back propagation (BP) neural network and support vector machine (SVM), with different numbers of hidden layer nodes and activation/kernel functions. Then, the models with better performance metrics are selected to compensate the measuring error of the thermal sensor. The experimental results show that both the BP neural network and the SVM can significantly improve the accuracy of the thermal sensor.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9602045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the influences of measuring distance and ambient temperature on the measurement accuracy of thermal sensors are explored through experiment. The data collected during the experiment are analyzed and used to train two machine learning models, i.e., back propagation (BP) neural network and support vector machine (SVM), with different numbers of hidden layer nodes and activation/kernel functions. Then, the models with better performance metrics are selected to compensate the measuring error of the thermal sensor. The experimental results show that both the BP neural network and the SVM can significantly improve the accuracy of the thermal sensor.
基于BP神经网络和支持向量机的热传感器标定
本文通过实验探讨了测量距离和环境温度对热传感器测量精度的影响。对实验中收集的数据进行分析,并用于训练具有不同隐层节点数和激活/核函数的BP神经网络和支持向量机两种机器学习模型。然后,选择性能指标较好的模型来补偿热传感器的测量误差。实验结果表明,BP神经网络和支持向量机都能显著提高热传感器的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信