Page Object Detection in Vietnamese Document Images with Novel Approach

Luc T. Le, Trong-Thuan Nguyen, Khang Nguyen
{"title":"Page Object Detection in Vietnamese Document Images with Novel Approach","authors":"Luc T. Le, Trong-Thuan Nguyen, Khang Nguyen","doi":"10.1109/NICS56915.2022.10013374","DOIUrl":null,"url":null,"abstract":"We witnessed the rising popularity of Vietnamese documents on online platforms. Digitized Vietnamese documents (e.g., administrative text, scientific papers, textbooks, etc.) are available online. As a result, we need algorithms that can understand documents. Vietnamese is one of the most difficult languages with the Latin alphabet with additional accent symbols and derivative characters. Moreover, we still struggle with challenges arising from external and internal factors. This requires a good enough detector model as the foundation for extracting information tasks. In this research, we address page object detection in Vietnamese document images. We explore the performance of the UIT-DODV-Ext dataset, the largest Vietnamese document image dataset that includes scientific papers and textbooks. Additionally, we leverage the state-of-the-art object detector and then propose CasGRoIENet to improve the performance of the UIT-DODV-Ext dataset. CasGRoIENet achieves 75.9% mAP which is 2.3% higher than state-of-the-art results.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We witnessed the rising popularity of Vietnamese documents on online platforms. Digitized Vietnamese documents (e.g., administrative text, scientific papers, textbooks, etc.) are available online. As a result, we need algorithms that can understand documents. Vietnamese is one of the most difficult languages with the Latin alphabet with additional accent symbols and derivative characters. Moreover, we still struggle with challenges arising from external and internal factors. This requires a good enough detector model as the foundation for extracting information tasks. In this research, we address page object detection in Vietnamese document images. We explore the performance of the UIT-DODV-Ext dataset, the largest Vietnamese document image dataset that includes scientific papers and textbooks. Additionally, we leverage the state-of-the-art object detector and then propose CasGRoIENet to improve the performance of the UIT-DODV-Ext dataset. CasGRoIENet achieves 75.9% mAP which is 2.3% higher than state-of-the-art results.
基于新方法的越南文文档图像页面目标检测
我们见证了越南文件在网络平台上越来越受欢迎。数字化的越南文件(例如,行政文件,科学论文,教科书等)可在网上获得。因此,我们需要能够理解文档的算法。越南语是拉丁字母中最困难的语言之一,带有额外的重音符号和派生字符。此外,我们还在努力应对外部和内部因素带来的挑战。这需要一个足够好的检测器模型作为提取信息任务的基础。在本研究中,我们研究了越南语文档图像中的页面目标检测。我们探索了UIT-DODV-Ext数据集的性能,该数据集是最大的越南文档图像数据集,包括科学论文和教科书。此外,我们利用最先进的目标检测器,然后提出CasGRoIENet来提高unit - dodv - ext数据集的性能。CasGRoIENet达到75.9%的mAP,比最先进的结果高出2.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信