Classification method for imbalanced data set based on EKCStacking algorithm

Qunzhong Liu, W. Luo, Tao Shi
{"title":"Classification method for imbalanced data set based on EKCStacking algorithm","authors":"Qunzhong Liu, W. Luo, Tao Shi","doi":"10.1145/3375998.3376002","DOIUrl":null,"url":null,"abstract":"The processing of imbalanced data sets has always been a hot issue in machine learning. The traditional classification method is to pursue the overall classification accuracy of data sets, and often ignores the classification effect of minority samples. Stacking is a framework algorithm. Based on the Stacking framework, in this paper, we introduce a new oversampling algorithm EKSMOTE and cost-sensitive theory into Stacking, and propose the EKCStacking algorithm. The algorithm uses the EKSMOTE algorithm to reduce imbalanced ratio of data set before data training, and then the Level 1 layer uses a cost-sensitive classifier. The experimental results of the data set in the Keel database show that EKCStacking improves the classification accuracy of minority samples and makes the performance more stable compared with the traditional algorithm.","PeriodicalId":395773,"journal":{"name":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375998.3376002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The processing of imbalanced data sets has always been a hot issue in machine learning. The traditional classification method is to pursue the overall classification accuracy of data sets, and often ignores the classification effect of minority samples. Stacking is a framework algorithm. Based on the Stacking framework, in this paper, we introduce a new oversampling algorithm EKSMOTE and cost-sensitive theory into Stacking, and propose the EKCStacking algorithm. The algorithm uses the EKSMOTE algorithm to reduce imbalanced ratio of data set before data training, and then the Level 1 layer uses a cost-sensitive classifier. The experimental results of the data set in the Keel database show that EKCStacking improves the classification accuracy of minority samples and makes the performance more stable compared with the traditional algorithm.
基于EKCStacking算法的不平衡数据集分类方法
不平衡数据集的处理一直是机器学习中的一个热点问题。传统的分类方法是追求数据集的整体分类精度,往往忽略了少数样本的分类效果。堆叠是一种框架算法。在堆叠框架的基础上,将一种新的过采样算法EKSMOTE和代价敏感理论引入到堆叠中,提出了EKCStacking算法。该算法在数据训练前使用EKSMOTE算法降低数据集的不平衡率,然后在第1层使用代价敏感分类器。Keel数据库数据集的实验结果表明,与传统算法相比,EKCStacking提高了少数样本的分类精度,性能更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信