Inspection of Separability of Normal and Migraine fNIRS Data using LDA and PCA

I. Sen, Andreas Akun
{"title":"Inspection of Separability of Normal and Migraine fNIRS Data using LDA and PCA","authors":"I. Sen, Andreas Akun","doi":"10.1109/SIU.2006.1659789","DOIUrl":null,"url":null,"abstract":"Functional near infrared spectroscopy (fNIRS) is an exciting, relatively new method to measure cognitive activity in the brain. Since the method measures blood oxygenation, it can be used for examining the differences between migraineurs and healthy people since migraine is a neurovascular disease. The aim of this study is to inspect the differences in neurovascular dynamics of healthy subjects and migraineurs. To achieve this aim, linear discriminant analysis (LDA) and principal component analysis (PCA) have been applied to acquired fNIRS signals, and parametric classification has been performed to quantify the separability","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional near infrared spectroscopy (fNIRS) is an exciting, relatively new method to measure cognitive activity in the brain. Since the method measures blood oxygenation, it can be used for examining the differences between migraineurs and healthy people since migraine is a neurovascular disease. The aim of this study is to inspect the differences in neurovascular dynamics of healthy subjects and migraineurs. To achieve this aim, linear discriminant analysis (LDA) and principal component analysis (PCA) have been applied to acquired fNIRS signals, and parametric classification has been performed to quantify the separability
用LDA和PCA检验正常和偏头痛近红外光谱数据的可分离性
功能近红外光谱(fNIRS)是一种令人兴奋的、相对较新的测量大脑认知活动的方法。由于该方法测量血液氧合,因此可以用于检查偏头痛患者与健康人之间的差异,因为偏头痛是一种神经血管疾病。本研究的目的是检查健康受试者和偏头痛患者神经血管动力学的差异。为了实现这一目标,采用线性判别分析(LDA)和主成分分析(PCA)对采集的近红外光谱信号进行分析,并进行参数分类来量化可分性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信