Concept Language Models and Event-based Concept Number Selection for Zero-example Event Detection

Damianos Galanopoulos, Fotini Markatopoulou, V. Mezaris, I. Patras
{"title":"Concept Language Models and Event-based Concept Number Selection for Zero-example Event Detection","authors":"Damianos Galanopoulos, Fotini Markatopoulou, V. Mezaris, I. Patras","doi":"10.1145/3078971.3079043","DOIUrl":null,"url":null,"abstract":"Zero-example event detection is a problem where, given an event query as input but no example videos for training a detector, the system retrieves the most closely related videos. In this paper we present a fully-automatic zero-example event detection method that is based on translating the event description to a predefined set of concepts for which previously trained visual concept detectors are available. We adopt the use of Concept Language Models (CLMs), which is a method of augmenting semantic concept definition, and we propose a new concept-selection method for deciding on the appropriate number of the concepts needed to describe an event query. The proposed system achieves state-of-the-art performance in automatic zero-example event detection.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Zero-example event detection is a problem where, given an event query as input but no example videos for training a detector, the system retrieves the most closely related videos. In this paper we present a fully-automatic zero-example event detection method that is based on translating the event description to a predefined set of concepts for which previously trained visual concept detectors are available. We adopt the use of Concept Language Models (CLMs), which is a method of augmenting semantic concept definition, and we propose a new concept-selection method for deciding on the appropriate number of the concepts needed to describe an event query. The proposed system achieves state-of-the-art performance in automatic zero-example event detection.
零例事件检测的概念语言模型和基于事件的概念号选择
零示例事件检测是这样一个问题:给定一个事件查询作为输入,但没有用于训练检测器的示例视频,系统检索最密切相关的视频。在本文中,我们提出了一种全自动零例事件检测方法,该方法基于将事件描述转换为预先训练好的视觉概念检测器可用的预定义概念集。我们采用了概念语言模型(CLMs),这是一种增强语义概念定义的方法,我们提出了一种新的概念选择方法来决定描述事件查询所需的适当数量的概念。该系统在自动零例事件检测方面达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信