Damianos Galanopoulos, Fotini Markatopoulou, V. Mezaris, I. Patras
{"title":"Concept Language Models and Event-based Concept Number Selection for Zero-example Event Detection","authors":"Damianos Galanopoulos, Fotini Markatopoulou, V. Mezaris, I. Patras","doi":"10.1145/3078971.3079043","DOIUrl":null,"url":null,"abstract":"Zero-example event detection is a problem where, given an event query as input but no example videos for training a detector, the system retrieves the most closely related videos. In this paper we present a fully-automatic zero-example event detection method that is based on translating the event description to a predefined set of concepts for which previously trained visual concept detectors are available. We adopt the use of Concept Language Models (CLMs), which is a method of augmenting semantic concept definition, and we propose a new concept-selection method for deciding on the appropriate number of the concepts needed to describe an event query. The proposed system achieves state-of-the-art performance in automatic zero-example event detection.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Zero-example event detection is a problem where, given an event query as input but no example videos for training a detector, the system retrieves the most closely related videos. In this paper we present a fully-automatic zero-example event detection method that is based on translating the event description to a predefined set of concepts for which previously trained visual concept detectors are available. We adopt the use of Concept Language Models (CLMs), which is a method of augmenting semantic concept definition, and we propose a new concept-selection method for deciding on the appropriate number of the concepts needed to describe an event query. The proposed system achieves state-of-the-art performance in automatic zero-example event detection.