Efficient, Optimal MPI Datatype Reconstruction for Vector and Index Types

Martin Kalany, J. Träff
{"title":"Efficient, Optimal MPI Datatype Reconstruction for Vector and Index Types","authors":"Martin Kalany, J. Träff","doi":"10.1145/2802658.2802671","DOIUrl":null,"url":null,"abstract":"Type reconstruction is the process of finding an efficient representation in terms of space and processing time of a data layout as an MPI derived datatype. Practically efficient type reconstruction and normalization is important for high-quality MPI implementations that strive to provide good performance for communication operations involving noncontiguous data. Although it has recently been shown that the general problem of computing optimal tree representations of derived datatypes allowing any of the MPI derived datatype constructors can be solved in polynomial time, the algorithm for this may unfortunately be impractical for datatypes with large counts. By restricting the allowed constructors to vector and index-block type constructors, but excluding the most general MPI_Type_create_struct constructor, the problem can be solved much more efficiently. More precisely, we give a new O(n log n/log log n) time algorithm for finding cost-optimal representations of MPI type maps of length n using only vector and index-block constructors for a simple but flexible, additive cost model. This improves significantly over a previous O(n√n) time algorithm for the same problem, and the algorithm is simple enough to be considered for practical MPI libraries.","PeriodicalId":365272,"journal":{"name":"Proceedings of the 22nd European MPI Users' Group Meeting","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2802658.2802671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Type reconstruction is the process of finding an efficient representation in terms of space and processing time of a data layout as an MPI derived datatype. Practically efficient type reconstruction and normalization is important for high-quality MPI implementations that strive to provide good performance for communication operations involving noncontiguous data. Although it has recently been shown that the general problem of computing optimal tree representations of derived datatypes allowing any of the MPI derived datatype constructors can be solved in polynomial time, the algorithm for this may unfortunately be impractical for datatypes with large counts. By restricting the allowed constructors to vector and index-block type constructors, but excluding the most general MPI_Type_create_struct constructor, the problem can be solved much more efficiently. More precisely, we give a new O(n log n/log log n) time algorithm for finding cost-optimal representations of MPI type maps of length n using only vector and index-block constructors for a simple but flexible, additive cost model. This improves significantly over a previous O(n√n) time algorithm for the same problem, and the algorithm is simple enough to be considered for practical MPI libraries.
高效,最优的MPI数据类型重建向量和索引类型
类型重构是在空间和处理时间方面找到数据布局作为MPI派生数据类型的有效表示的过程。实际上,高效的类型重构和规范化对于努力为涉及不连续数据的通信操作提供良好性能的高质量MPI实现非常重要。尽管最近已经证明,计算派生数据类型的最优树表示的一般问题(允许任何MPI派生数据类型构造函数)可以在多项式时间内解决,但不幸的是,对于具有大计数的数据类型,该算法可能不切实际。通过将允许的构造函数限制为矢量和索引块类型的构造函数,但排除最通用的MPI_Type_create_struct构造函数,可以更有效地解决这个问题。更准确地说,我们给出了一个新的O(n log n/log log n)时间算法,用于寻找长度为n的MPI类型映射的成本最优表示,该算法仅使用向量和索引块构造函数,用于简单但灵活的附加成本模型。对于相同的问题,这比之前的O(n√n)时间算法有了显著的改进,并且该算法足够简单,可以考虑用于实际的MPI库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信