Hyung-Sin Kim, Michael P. Andersen, Kaifei Chen, Sam Kumar, William J. Zhao, Kevin Ma, D. Culler
{"title":"System Architecture Directions for Post-SoC/32-bit Networked Sensors","authors":"Hyung-Sin Kim, Michael P. Andersen, Kaifei Chen, Sam Kumar, William J. Zhao, Kevin Ma, D. Culler","doi":"10.1145/3274783.3274839","DOIUrl":null,"url":null,"abstract":"The emergence of low-power 32-bit Systems-on-Chip (SoCs), which integrate a 32-bit MCU, radio, and flash, presents an opportunity to re-examine design points and trade-offs at all levels of the system architecture of networked sensors. To this end, we develop a post-SoC/32-bit design point called Hamilton, showing that using integrated components enables a ~$7 core and shifts hardware modularity to design time. We study the interaction between hardware and embedded operating systems, identifying that (1) post-SoC motes provide lower idle current (5.9 μA) than traditional 16-bit motes, (2) 32-bit MCUs are a major energy consumer (e.g., tick increases idle current >50 times), comparable to radios, and (3) thread-based concurrency is viable, requiring only 8.3 μs of context switch time. We design a system architecture, based on a tickless multithreading operating system, with cooperative/adaptive clocking, advanced sensor abstraction, and preemptive packet processing. Its efficient MCU control improves concurrency with ~30% less energy consumption. Together, these developments set the system architecture for networked sensors in a new direction.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3274839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
The emergence of low-power 32-bit Systems-on-Chip (SoCs), which integrate a 32-bit MCU, radio, and flash, presents an opportunity to re-examine design points and trade-offs at all levels of the system architecture of networked sensors. To this end, we develop a post-SoC/32-bit design point called Hamilton, showing that using integrated components enables a ~$7 core and shifts hardware modularity to design time. We study the interaction between hardware and embedded operating systems, identifying that (1) post-SoC motes provide lower idle current (5.9 μA) than traditional 16-bit motes, (2) 32-bit MCUs are a major energy consumer (e.g., tick increases idle current >50 times), comparable to radios, and (3) thread-based concurrency is viable, requiring only 8.3 μs of context switch time. We design a system architecture, based on a tickless multithreading operating system, with cooperative/adaptive clocking, advanced sensor abstraction, and preemptive packet processing. Its efficient MCU control improves concurrency with ~30% less energy consumption. Together, these developments set the system architecture for networked sensors in a new direction.