{"title":"Technical and environmental features of the application of renewable energy for decentralized power supply zones","authors":"N. N. Dolgikh, D. Osipov, N. D. Osipova","doi":"10.18822/edgcc134196","DOIUrl":null,"url":null,"abstract":"A feature of the geographical location of the Khanty-Mansiysk Autonomous Okrug - Yugra is the presence of a large number of zones of decentralized power supply. For a comparative environmental assessment of renewable energy installations, it is necessary to take into account the emissions of the entire life cycle. Throughout the presented cycle from mining to the production of power plant structures and then the disposal of the facility, a significant part of CO2 emissions is present. The problem of dismantling and recycling of spent structures of wind power plants is becoming essential. Wind turbines cause the death of birds, violate the conditions of comfortable living for people and animals \nFrom a technical point of view, it is necessary to take into account the regime parameters: indicators of the quality of electricity at the point of connection, voltage levels at load nodes, operating modes of energy storage devices. To assess the operating parameters of an isolated power supply system with renewable energy sources, this paper proposes to use the wavelet transform method. The Haar wavelet was used as a basic function in the paper. A mathematical model is presented that makes it possible to obtain a low-frequency (trend) component and a high-frequency component using the wavelet transform. The model allows for the optimal choice of a hybrid energy storage device for a renewable energy source - a battery and a supercapacitor.","PeriodicalId":336975,"journal":{"name":"Environmental Dynamics and Global Climate Change","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Dynamics and Global Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18822/edgcc134196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A feature of the geographical location of the Khanty-Mansiysk Autonomous Okrug - Yugra is the presence of a large number of zones of decentralized power supply. For a comparative environmental assessment of renewable energy installations, it is necessary to take into account the emissions of the entire life cycle. Throughout the presented cycle from mining to the production of power plant structures and then the disposal of the facility, a significant part of CO2 emissions is present. The problem of dismantling and recycling of spent structures of wind power plants is becoming essential. Wind turbines cause the death of birds, violate the conditions of comfortable living for people and animals
From a technical point of view, it is necessary to take into account the regime parameters: indicators of the quality of electricity at the point of connection, voltage levels at load nodes, operating modes of energy storage devices. To assess the operating parameters of an isolated power supply system with renewable energy sources, this paper proposes to use the wavelet transform method. The Haar wavelet was used as a basic function in the paper. A mathematical model is presented that makes it possible to obtain a low-frequency (trend) component and a high-frequency component using the wavelet transform. The model allows for the optimal choice of a hybrid energy storage device for a renewable energy source - a battery and a supercapacitor.