{"title":"RF Field Investigation and Maximum Available Power Analysis for Enhanced RF Energy Scavenging","authors":"N. Shariati, W. Rowe, K. Ghorbani","doi":"10.23919/EUMC.2012.6459223","DOIUrl":null,"url":null,"abstract":"RF energy harvesting is attracting widespread interest to meet the goal of providing sustainable energy sources for future growth and protection of the environment. In order to demonstrate the feasibility of RF energy harvesting, RF field investigations and analysis of maximum available power in the suburbs of Melbourne, Australia are conducted. Measurement results and analysis indicate that broadcasting system at 540 MHz (with 20 MHz bandwidth) and 100 MHz (88-108 MHz) are great scavenging sources. These frequency ranges provide stable RF signal levels and low propagation loss, produce maximum available power to a range of locations. In addition, broadcasting bands offer a great deal of flexibility to deploy simple and cost-effective implementations, which is of paramount importance for optimal power harvesting systems.","PeriodicalId":266910,"journal":{"name":"2012 42nd European Microwave Conference","volume":"48 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 42nd European Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMC.2012.6459223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
RF energy harvesting is attracting widespread interest to meet the goal of providing sustainable energy sources for future growth and protection of the environment. In order to demonstrate the feasibility of RF energy harvesting, RF field investigations and analysis of maximum available power in the suburbs of Melbourne, Australia are conducted. Measurement results and analysis indicate that broadcasting system at 540 MHz (with 20 MHz bandwidth) and 100 MHz (88-108 MHz) are great scavenging sources. These frequency ranges provide stable RF signal levels and low propagation loss, produce maximum available power to a range of locations. In addition, broadcasting bands offer a great deal of flexibility to deploy simple and cost-effective implementations, which is of paramount importance for optimal power harvesting systems.