Power Factor Improvements for Load Commutated Inverters

T. Besselmann, Pieder Jorg, Sture Van de Moortel
{"title":"Power Factor Improvements for Load Commutated Inverters","authors":"T. Besselmann, Pieder Jorg, Sture Van de Moortel","doi":"10.1109/CCTA.2018.8511428","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the control and operation of load commutated inverter-fed synchronous machines, and in particular with the selection of the firing angles on the machine side of the load commutated inverter. An extension to the previously published Model Predictive Torque Control was developed, which improves the operation of load commutated inverters at steady state. The main benefits of applying this control method are an improved power factor and reduced reactive power consumption, with a simultaneous increase of drive efficiency and reduction of the harmonic content of the line side currents and of the air gap torque. Further, the stator and field currents are reduced, reducing the temperatures in the machine and the transformer, which ultimately increases the lifetime of the equipment. Alternatively, the power factor improvements can be utilized for increasing the output power of the synchronous machines. The findings are validated on a reference industrial site comprising three load commutated inverter-fed synchronous machines with a nominal shaft power of 7.5 MW each.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper is concerned with the control and operation of load commutated inverter-fed synchronous machines, and in particular with the selection of the firing angles on the machine side of the load commutated inverter. An extension to the previously published Model Predictive Torque Control was developed, which improves the operation of load commutated inverters at steady state. The main benefits of applying this control method are an improved power factor and reduced reactive power consumption, with a simultaneous increase of drive efficiency and reduction of the harmonic content of the line side currents and of the air gap torque. Further, the stator and field currents are reduced, reducing the temperatures in the machine and the transformer, which ultimately increases the lifetime of the equipment. Alternatively, the power factor improvements can be utilized for increasing the output power of the synchronous machines. The findings are validated on a reference industrial site comprising three load commutated inverter-fed synchronous machines with a nominal shaft power of 7.5 MW each.
负载换相逆变器的功率因数改进
本文研究了负载换相逆变器同步电机的控制和运行,重点研究了负载换相逆变器机侧发射角的选择。对先前发表的模型预测转矩控制进行了扩展,改进了负载换相逆变器在稳态下的运行。应用这种控制方法的主要好处是提高了功率因数,减少了无功功率消耗,同时提高了驱动效率,减少了线侧电流和气隙转矩的谐波含量。此外,定子和磁场电流减少,降低了机器和变压器的温度,最终增加了设备的使用寿命。另外,功率因数的改进可用于增加同步电机的输出功率。研究结果在一个参考工业现场进行了验证,该工业现场包括三台负载换向逆变器同步电机,每台额定轴功率为7.5 MW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信