Classification of Dengue Hemorrhagic Fever (DHF) Spread in Bandung using Hybrid Naïve Bayes, K-Nearest Neighbor, and Artificial Neural Network Methods

Fatri Nurul Inayah, Sri Suryani Prasetiyowati, Yuliant sibaroni
{"title":"Classification of Dengue Hemorrhagic Fever (DHF) Spread in Bandung using Hybrid Naïve Bayes, K-Nearest Neighbor, and Artificial Neural Network Methods","authors":"Fatri Nurul Inayah, Sri Suryani Prasetiyowati, Yuliant sibaroni","doi":"10.21108/ijoict.v7i1.562","DOIUrl":null,"url":null,"abstract":"Dengue fever is a dangerous disease caused by the dengue virus. One of the factors causing dengue fever is due to the place where you live in the tropics, so that cases of dengue fever in Indonesia, especially in the Bandung Regency area, will continue to show high numbers. Therefore, information is needed on the spread of this disease by requiring the accuracy and speed of diagnosis as early prevention. In terms of compiling this information, classification techniques can be done using a combination of methods Naïve Bayes, K-Nearest Neighbor(KNN), and Artificial Neural Network(ANN) to build predictions of the classification of dengue fever, and the data used in this Final Project are dataset affected by the spread of dengue fever in Bandung regency in the 2012-2018 period. The hybrid classifier results can improve accuracy with the voting method with an accuracy level of 90% in the classification of dengue fever.","PeriodicalId":137090,"journal":{"name":"International Journal on Information and Communication Technology (IJoICT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information and Communication Technology (IJoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/ijoict.v7i1.562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dengue fever is a dangerous disease caused by the dengue virus. One of the factors causing dengue fever is due to the place where you live in the tropics, so that cases of dengue fever in Indonesia, especially in the Bandung Regency area, will continue to show high numbers. Therefore, information is needed on the spread of this disease by requiring the accuracy and speed of diagnosis as early prevention. In terms of compiling this information, classification techniques can be done using a combination of methods Naïve Bayes, K-Nearest Neighbor(KNN), and Artificial Neural Network(ANN) to build predictions of the classification of dengue fever, and the data used in this Final Project are dataset affected by the spread of dengue fever in Bandung regency in the 2012-2018 period. The hybrid classifier results can improve accuracy with the voting method with an accuracy level of 90% in the classification of dengue fever.
基于混合Naïve贝叶斯、k -近邻和人工神经网络方法的万隆市登革出血热(DHF)传播分类
登革热是由登革热病毒引起的一种危险疾病。引起登革热的一个因素是由于你居住在热带地区,因此印度尼西亚的登革热病例,特别是在万隆摄政区,将继续显示出高数字。因此,需要关于这种疾病传播的信息,要求诊断的准确性和速度,作为早期预防。在信息编译方面,分类技术可以使用Naïve贝叶斯、k -近邻(KNN)和人工神经网络(ANN)相结合的方法来构建登革热分类预测,本Final Project使用的数据是受2012-2018年万隆县登革热传播影响的数据集。混合分类器结果可以提高投票法对登革热分类的准确率,准确率达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信