Nonlinear State Estimation Technique Implementation for Human Heart Model

Amit Vijay Waghmare, Pradhnya Arun Priyadarshi, Surender Kannaiyan, V. Kamble
{"title":"Nonlinear State Estimation Technique Implementation for Human Heart Model","authors":"Amit Vijay Waghmare, Pradhnya Arun Priyadarshi, Surender Kannaiyan, V. Kamble","doi":"10.1109/NCC.2018.8600037","DOIUrl":null,"url":null,"abstract":"Human heart is a vital organ therefore proper diagnosis of heart activities is essential. Various parameter estimation techniques have been developed to estimate heart parameters. In this work, we use Ensemble Kalman Filter (EnKF) and Particle Filter (PF) for dynamic assimilation of human heart parameters. EnKF and PF are modified filters specifically designed for state prediction of nonlinear systems with large data samples. A third order mathematical heart model is used to estimate three heart parameters that includes movements of heart muscle fiber, tension in heart muscle and electrochemical activity of the heart. EnKF and PF are applied to heart model and different case studies are performed to observe the prediction accuracy by comparing sum squared error values. Case studies are performed with variable state and measurement noise values. The proposed approach demonstrates promising results in accurately predicting the human heart parameters.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human heart is a vital organ therefore proper diagnosis of heart activities is essential. Various parameter estimation techniques have been developed to estimate heart parameters. In this work, we use Ensemble Kalman Filter (EnKF) and Particle Filter (PF) for dynamic assimilation of human heart parameters. EnKF and PF are modified filters specifically designed for state prediction of nonlinear systems with large data samples. A third order mathematical heart model is used to estimate three heart parameters that includes movements of heart muscle fiber, tension in heart muscle and electrochemical activity of the heart. EnKF and PF are applied to heart model and different case studies are performed to observe the prediction accuracy by comparing sum squared error values. Case studies are performed with variable state and measurement noise values. The proposed approach demonstrates promising results in accurately predicting the human heart parameters.
人体心脏模型非线性状态估计技术的实现
心脏是人体的重要器官,因此对心脏活动的正确诊断至关重要。各种参数估计技术已经发展到估计心脏参数。在这项工作中,我们使用集合卡尔曼滤波器(EnKF)和粒子滤波器(PF)对人类心脏参数进行动态同化。EnKF和PF是专门为具有大数据样本的非线性系统的状态预测而设计的改进滤波器。采用三阶心脏数学模型对心肌纤维运动、心肌张力和心脏电化学活动等三个心脏参数进行了估计。将EnKF和PF应用于心脏模型,并通过比较误差平方和值来观察不同案例的预测精度。用可变状态和测量噪声值进行案例研究。该方法在准确预测人类心脏参数方面显示出良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信