Lagrange Coded Computing with Sparsity Constraints

Mohammad Fahim, V. Cadambe
{"title":"Lagrange Coded Computing with Sparsity Constraints","authors":"Mohammad Fahim, V. Cadambe","doi":"10.1109/ALLERTON.2019.8919966","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a distributed coding scheme that allows for lower computation cost per computing node than the standard Lagrange Coded Computing scheme. The proposed coding scheme is useful for cases where the elements of the input data set are of large dimensions and the computing nodes have limited computation power. This coding scheme provides a trade-off between the computation cost per worker and the recovery threshold in a distributed coded computing framework. The proposed scheme is also extended to provide data privacy against at most t colluding worker nodes in the system.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we propose a distributed coding scheme that allows for lower computation cost per computing node than the standard Lagrange Coded Computing scheme. The proposed coding scheme is useful for cases where the elements of the input data set are of large dimensions and the computing nodes have limited computation power. This coding scheme provides a trade-off between the computation cost per worker and the recovery threshold in a distributed coded computing framework. The proposed scheme is also extended to provide data privacy against at most t colluding worker nodes in the system.
稀疏约束下的拉格朗日编码计算
在本文中,我们提出了一种分布式编码方案,该方案允许每个计算节点的计算成本低于标准拉格朗日编码计算方案。所提出的编码方案适用于输入数据集元素尺寸较大,计算节点计算能力有限的情况。这种编码方案在分布式编码计算框架中的每个工作人员的计算成本和恢复阈值之间提供了一种权衡。该方案还扩展到对系统中最多t个串通的工作节点提供数据隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信