MCDA: A Parameterless Algorithm for Detecting Communities in Multidimensional Networks

Oualid Boutemine, M. Bouguessa
{"title":"MCDA: A Parameterless Algorithm for Detecting Communities in Multidimensional Networks","authors":"Oualid Boutemine, M. Bouguessa","doi":"10.1145/3110025.3110052","DOIUrl":null,"url":null,"abstract":"This paper introduces a parameterless approach named MCDA: Multidimensional Communities Detection Algorithm. MCDA adopts a local search mechanism which is inspired from the label propagation principle. To this end, we design a novel propagation rule that exploits the most frequently used interaction dimensions among neighbors as an additional constraint for membership selections. The new propagation rule allows MCDA to automatically unfold the hidden communities in a multidimensional context. The detected communities are further processed for relevant dimensions selection using an inter-class inertia-based procedure. The proposed algorithm is fully automated and does not require any parameter to be set by the user to recover communities and their associated dimensions.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces a parameterless approach named MCDA: Multidimensional Communities Detection Algorithm. MCDA adopts a local search mechanism which is inspired from the label propagation principle. To this end, we design a novel propagation rule that exploits the most frequently used interaction dimensions among neighbors as an additional constraint for membership selections. The new propagation rule allows MCDA to automatically unfold the hidden communities in a multidimensional context. The detected communities are further processed for relevant dimensions selection using an inter-class inertia-based procedure. The proposed algorithm is fully automated and does not require any parameter to be set by the user to recover communities and their associated dimensions.
多维网络中群体检测的无参数算法
本文介绍了一种无参数的方法MCDA:多维社区检测算法。MCDA采用了一种受标签传播原理启发的局部搜索机制。为此,我们设计了一种新的传播规则,利用邻居之间最常用的交互维度作为成员选择的附加约束。新的传播规则允许MCDA在多维上下文中自动展开隐藏的社区。使用基于类间惯性的程序对检测到的群落进行进一步处理,以选择相关的维度。该算法是完全自动化的,不需要用户设置任何参数来恢复社区及其相关维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信