Understanding the Population Structure Correction Regression

T. T. Mai, Pierre Alquier
{"title":"Understanding the Population Structure Correction Regression","authors":"T. T. Mai, Pierre Alquier","doi":"10.11159/icsta22.114","DOIUrl":null,"url":null,"abstract":"Although genome-wide association studies (GWAS) on complex traits have achieved great successes, the current leading GWAS approaches simply perform to test each genotype-phenotype association separately for each genetic variant. Curiously, the statistical properties for using these approaches is not known when a joint model for the whole genetic variants is considered. Here we advance in GWAS in understanding the statistical properties of the\"population structure correction\"(PSC) approach, a standard univariate approach in GWAS. We further propose and analyse a correction to the PSC approach, termed as\"corrected population correction\"(CPC). Together with the theoretical results, numerical simulations show that CPC is always comparable or better than PSC, with a dramatic improvement in some special cases.","PeriodicalId":325859,"journal":{"name":"Proceedings of the 4th International Conference on Statistics: Theory and Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta22.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Although genome-wide association studies (GWAS) on complex traits have achieved great successes, the current leading GWAS approaches simply perform to test each genotype-phenotype association separately for each genetic variant. Curiously, the statistical properties for using these approaches is not known when a joint model for the whole genetic variants is considered. Here we advance in GWAS in understanding the statistical properties of the"population structure correction"(PSC) approach, a standard univariate approach in GWAS. We further propose and analyse a correction to the PSC approach, termed as"corrected population correction"(CPC). Together with the theoretical results, numerical simulations show that CPC is always comparable or better than PSC, with a dramatic improvement in some special cases.
理解人口结构修正回归
尽管复杂性状的全基因组关联研究(GWAS)已经取得了巨大的成功,但目前领先的GWAS方法只是对每个遗传变异分别测试每个基因型-表型关联。奇怪的是,当考虑到整个遗传变异的联合模型时,使用这些方法的统计特性是未知的。在这里,我们进一步了解了“人口结构校正”(PSC)方法的统计特性,这是GWAS中标准的单变量方法。我们进一步提出并分析了对PSC方法的修正,称为“修正人口修正”(CPC)。与理论结果相结合,数值模拟结果表明,CPC总是与PSC相当或更好,在某些特殊情况下有显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信