{"title":"Evaluating a method to detect temporal trends of phrases in research documents","authors":"H. Abe, S. Tsumoto","doi":"10.1109/COGINF.2009.5250711","DOIUrl":null,"url":null,"abstract":"In text mining processes, the importance indices of the technical terms play a key role in finding valuable patterns from various documents. Further, methods for finding emergent terms have attracted considerable attention as an important issue called temporal text mining. However, many conventional methods are not robust against changes in technical terms. In order to detect remarkable temporal trends of technical terms in given textual datasets robustly, we propose a method based on temporal changes in several importance indices by assuming the importance indices of the terms to be a dataset. Empirical studies show that two representative importance indices are applied to the documents from two research areas. After detecting the temporal trends, we compared the emergent trend of the technical phrases to some emergent phrases given by a domain expert.","PeriodicalId":420853,"journal":{"name":"2009 8th IEEE International Conference on Cognitive Informatics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 8th IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2009.5250711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In text mining processes, the importance indices of the technical terms play a key role in finding valuable patterns from various documents. Further, methods for finding emergent terms have attracted considerable attention as an important issue called temporal text mining. However, many conventional methods are not robust against changes in technical terms. In order to detect remarkable temporal trends of technical terms in given textual datasets robustly, we propose a method based on temporal changes in several importance indices by assuming the importance indices of the terms to be a dataset. Empirical studies show that two representative importance indices are applied to the documents from two research areas. After detecting the temporal trends, we compared the emergent trend of the technical phrases to some emergent phrases given by a domain expert.