Guaranteed state estimation tuning for real time applications

E. Seignez, A. Lambert
{"title":"Guaranteed state estimation tuning for real time applications","authors":"E. Seignez, A. Lambert","doi":"10.1109/IVS.2009.5164320","DOIUrl":null,"url":null,"abstract":"Estimating the configuration of a vehicle is crucial for navigation. The most classical approaches are (extended) Kalman filtering and Markov localization, often implemented via particle filtering. Interval analysis allows an alternative approach: bounded-error localization. Contrary to classical Extended Kalman Filtering, this approach allows global localisation, and contrary to Markov localization it provides guaranteed results in the sense that a set is computed that contains all of the configurations that are consistent with the data and hypotheses. This paper describes the bounded-error localization algorithms so as to present a complexity study and how to achieve a real time implementation.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the configuration of a vehicle is crucial for navigation. The most classical approaches are (extended) Kalman filtering and Markov localization, often implemented via particle filtering. Interval analysis allows an alternative approach: bounded-error localization. Contrary to classical Extended Kalman Filtering, this approach allows global localisation, and contrary to Markov localization it provides guaranteed results in the sense that a set is computed that contains all of the configurations that are consistent with the data and hypotheses. This paper describes the bounded-error localization algorithms so as to present a complexity study and how to achieve a real time implementation.
保证实时应用程序的状态估计调优
估计车辆的配置对导航至关重要。最经典的方法是(扩展的)卡尔曼滤波和马尔可夫定位,通常通过粒子滤波实现。区间分析允许另一种方法:有界误差定位。与经典的扩展卡尔曼滤波相反,这种方法允许全局定位,并且与马尔可夫定位相反,它提供了保证的结果,即计算一个包含与数据和假设一致的所有配置的集合。本文介绍了有界误差定位算法,并对其复杂性进行了研究,并给出了如何实时实现的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信