City-Scale Fingerprint Positioning Framework based on MDT Data

Junjun Si, Zejiang Chen, Bo Tu, Shuaifu Dai, Xiangqun Chen
{"title":"City-Scale Fingerprint Positioning Framework based on MDT Data","authors":"Junjun Si, Zejiang Chen, Bo Tu, Shuaifu Dai, Xiangqun Chen","doi":"10.1109/ISCC55528.2022.9912993","DOIUrl":null,"url":null,"abstract":"Mobile positioning plays an essential role in smart city services. This paper proposes a fingerprint positioning framework based on massive Minimization of Drive Test (MDT) data to provide accurate and efficient city-scale positioning without additional equipment and measures. First, a multi-level fingerprint construction method is proposed using the Timing Advance (TA), Reference Signal Receiving Power (RSRP), and Reference Signal Receiving Quality (RSRQ) of the serving cell and neighboring cell. Then, an adaptive online fingerprint matching method is employed to extract and match online data fingerprints. Experiments show that the median positioning error is 29.97 meters with city-scale MDT data. It outperforms the reported accuracy of the state-of-the-art fingerprint positioning method.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile positioning plays an essential role in smart city services. This paper proposes a fingerprint positioning framework based on massive Minimization of Drive Test (MDT) data to provide accurate and efficient city-scale positioning without additional equipment and measures. First, a multi-level fingerprint construction method is proposed using the Timing Advance (TA), Reference Signal Receiving Power (RSRP), and Reference Signal Receiving Quality (RSRQ) of the serving cell and neighboring cell. Then, an adaptive online fingerprint matching method is employed to extract and match online data fingerprints. Experiments show that the median positioning error is 29.97 meters with city-scale MDT data. It outperforms the reported accuracy of the state-of-the-art fingerprint positioning method.
基于MDT数据的城市规模指纹定位框架
移动定位在智慧城市服务中起着至关重要的作用。本文提出了一种基于大规模最小化驾驶测试(MDT)数据的指纹定位框架,可以在不需要额外设备和措施的情况下提供准确高效的城市规模定位。首先,利用服务小区和相邻小区的时序推进(TA)、参考信号接收功率(RSRP)和参考信号接收质量(RSRQ),提出了一种多层指纹构建方法。然后,采用自适应在线指纹匹配方法对在线数据指纹进行提取和匹配。实验表明,在城市尺度MDT数据下,定位误差中值为29.97 m。它比报道的最先进的指纹定位方法的准确性要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信