Z. Stanojevic, O. Baumgartner, F. Mitterbauer, H. Demel, C. Kernstock, M. Karner, V. Eyert, A. France-Lanord, P. Saxe, C. Freeman, E. Wimmer
{"title":"Physical modeling - A new paradigm in device simulation","authors":"Z. Stanojevic, O. Baumgartner, F. Mitterbauer, H. Demel, C. Kernstock, M. Karner, V. Eyert, A. France-Lanord, P. Saxe, C. Freeman, E. Wimmer","doi":"10.1109/IEDM.2015.7409631","DOIUrl":null,"url":null,"abstract":"We go far beyond classical TCAD in and create a simulation framework that is ready for devices based on contemporary and future technology nodes. We do so by extending the common drift-diffusion-type device simulation framework with additional tools: (i) a k p-based subband structure tool, (ii) a deterministic subband Boltzmann transport solver, and (iii) a TCAD-compatible quantum transport solver, to capture every important aspect of device operation at the nano-scale. An atomistic ab-initio tool suite complements the framework providing material properties that would be hard to obtain otherwise. The capabilities of the approach are demonstrated on two different devices featuring non-planar geometry and alternative channel materials.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We go far beyond classical TCAD in and create a simulation framework that is ready for devices based on contemporary and future technology nodes. We do so by extending the common drift-diffusion-type device simulation framework with additional tools: (i) a k p-based subband structure tool, (ii) a deterministic subband Boltzmann transport solver, and (iii) a TCAD-compatible quantum transport solver, to capture every important aspect of device operation at the nano-scale. An atomistic ab-initio tool suite complements the framework providing material properties that would be hard to obtain otherwise. The capabilities of the approach are demonstrated on two different devices featuring non-planar geometry and alternative channel materials.