An uncertainty-driven approach to vortex analysis using oracle consensus and spatial proximity

Ayan Biswas, D. Thompson, Wenbin He, Qi Deng, Chun-Ming Chen, Han-Wei Shen, R. Machiraju, Anand Rangarajan
{"title":"An uncertainty-driven approach to vortex analysis using oracle consensus and spatial proximity","authors":"Ayan Biswas, D. Thompson, Wenbin He, Qi Deng, Chun-Ming Chen, Han-Wei Shen, R. Machiraju, Anand Rangarajan","doi":"10.1109/PACIFICVIS.2015.7156381","DOIUrl":null,"url":null,"abstract":"Although vortex analysis and detection have been extensively investigated in the past, none of the existing techniques are able to provide fully robust and reliable identification results. Local vortex detection methods are popular as they are efficient and easy to implement, and produce binary outputs based on a user-specified, hard threshold. However, vortices are global features, which present challenges for local detectors. On the other hand, global detectors are computationally intensive and require considerable user input. In this work, we propose a consensus-based uncertainty model and introduce spatial proximity to enhance vortex detection results obtained using point-based methods. We use four existing local vortex detectors and convert their outputs into fuzzy possibility values using a sigmoid-based soft-thresholding approach. We apply a majority voting scheme that enables us to identify candidate vortex regions with a higher degree of confidence. Then, we introduce spatial proximity- based analysis to discern the final vortical regions. Thus, by using spatial proximity coupled with fuzzy inputs, we propose a novel uncertainty analysis approach for vortex detection. We use expert's input to better estimate the system parameters and results from two real-world data sets demonstrate the efficacy of our method.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Although vortex analysis and detection have been extensively investigated in the past, none of the existing techniques are able to provide fully robust and reliable identification results. Local vortex detection methods are popular as they are efficient and easy to implement, and produce binary outputs based on a user-specified, hard threshold. However, vortices are global features, which present challenges for local detectors. On the other hand, global detectors are computationally intensive and require considerable user input. In this work, we propose a consensus-based uncertainty model and introduce spatial proximity to enhance vortex detection results obtained using point-based methods. We use four existing local vortex detectors and convert their outputs into fuzzy possibility values using a sigmoid-based soft-thresholding approach. We apply a majority voting scheme that enables us to identify candidate vortex regions with a higher degree of confidence. Then, we introduce spatial proximity- based analysis to discern the final vortical regions. Thus, by using spatial proximity coupled with fuzzy inputs, we propose a novel uncertainty analysis approach for vortex detection. We use expert's input to better estimate the system parameters and results from two real-world data sets demonstrate the efficacy of our method.
使用oracle共识和空间接近性的不确定性驱动涡旋分析方法
虽然涡旋分析和检测在过去已经得到了广泛的研究,但现有的技术都不能提供完全鲁棒和可靠的识别结果。局部涡旋检测方法很受欢迎,因为它们高效且易于实现,并且根据用户指定的硬阈值产生二进制输出。然而,涡旋是全局特征,这给局部探测器带来了挑战。另一方面,全局检测器是计算密集型的,需要大量的用户输入。在这项工作中,我们提出了一个基于共识的不确定性模型,并引入空间接近性来增强基于点的方法获得的涡流检测结果。我们使用四个现有的局部涡旋探测器,并使用基于s型的软阈值方法将它们的输出转换为模糊可能性值。我们采用多数投票方案,使我们能够以更高的置信度识别候选漩涡区域。然后,我们引入基于空间接近度的分析来识别最终的旋涡区域。因此,利用空间接近性和模糊输入相结合的方法,提出了一种新的涡检测不确定性分析方法。我们使用专家的输入来更好地估计系统参数,两个真实数据集的结果证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信