Ensemble modeling through multiplicative adjustment of class probability

S. Hong, J. Hosking, R. Natarajan
{"title":"Ensemble modeling through multiplicative adjustment of class probability","authors":"S. Hong, J. Hosking, R. Natarajan","doi":"10.1109/ICDM.2002.1184013","DOIUrl":null,"url":null,"abstract":"We develop a new concept for aggregating items of evidence for class probability estimation. In Naive Bayes, each feature contributes an independent multiplicative factor to the estimated class probability. We modify this model to include an exponent in each factor in order to introduce feature importance. These exponents are chosen to maximize the accuracy of estimated class probabilities on the training data. For Naive Bayes, this modification accomplishes more than what feature selection can. More generally, since the individual features can be the outputs of separate probability models, this yields a new ensemble modeling approach, which we call APM (Adjusted Probability Model), along with a regularized version called APMR.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We develop a new concept for aggregating items of evidence for class probability estimation. In Naive Bayes, each feature contributes an independent multiplicative factor to the estimated class probability. We modify this model to include an exponent in each factor in order to introduce feature importance. These exponents are chosen to maximize the accuracy of estimated class probabilities on the training data. For Naive Bayes, this modification accomplishes more than what feature selection can. More generally, since the individual features can be the outputs of separate probability models, this yields a new ensemble modeling approach, which we call APM (Adjusted Probability Model), along with a regularized version called APMR.
基于类概率乘性调整的集成建模
我们提出了一个新的概念来聚合类概率估计的证据项。在朴素贝叶斯中,每个特征为估计的类概率贡献了一个独立的乘法因子。我们修改了这个模型,在每个因素中包含一个指数,以引入特征的重要性。选择这些指数是为了最大限度地提高训练数据上估计的类概率的准确性。对于朴素贝叶斯,这种修改比特征选择完成得更多。更一般地说,由于单个特征可以是单独概率模型的输出,这产生了一种新的集成建模方法,我们称之为APM(调整概率模型),以及称为APMR的正则化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信