Patterns of Cyberbullying Victimization in US Adolescents: A Latent Class Analysis

Diana Mindrila
{"title":"Patterns of Cyberbullying Victimization in US Adolescents: A Latent Class Analysis","authors":"Diana Mindrila","doi":"10.20429/ger.2020.170201","DOIUrl":null,"url":null,"abstract":"This study used latent class analysis (LCA) with binary observed indicators to identify latent classes of victimization, based on the extent to which adolescents in the U.S. experienced traditional victimization and cyber-victimization. Data were collected by the National Center for Education Statistics and the Bureau of Justice Statistics using 2013 School Crime Supplement of the National Crime Victimization Survey. The sample included 4,939 individuals ages 12-18. LCA yielded a four-class solution: a) “Nonvictims” (N=4,274), b) “Traditional victims” (N=486), c) “Cyber-victims” (N=107), and d) “Traditional victims and cyber-victims” (N=72). These findings inform practitioners of the most prevalent types of victimization in the population of adolescents and facilitate the identification of individuals who are at risk of being victimized.","PeriodicalId":280226,"journal":{"name":"Georgia Educational Researcher","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgia Educational Researcher","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/ger.2020.170201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study used latent class analysis (LCA) with binary observed indicators to identify latent classes of victimization, based on the extent to which adolescents in the U.S. experienced traditional victimization and cyber-victimization. Data were collected by the National Center for Education Statistics and the Bureau of Justice Statistics using 2013 School Crime Supplement of the National Crime Victimization Survey. The sample included 4,939 individuals ages 12-18. LCA yielded a four-class solution: a) “Nonvictims” (N=4,274), b) “Traditional victims” (N=486), c) “Cyber-victims” (N=107), and d) “Traditional victims and cyber-victims” (N=72). These findings inform practitioners of the most prevalent types of victimization in the population of adolescents and facilitate the identification of individuals who are at risk of being victimized.
美国青少年网络欺凌受害模式:潜在阶级分析
本研究基于美国青少年经历传统伤害和网络伤害的程度,采用潜在类别分析(LCA)和二元观察指标来识别潜在的伤害类别。数据由国家教育统计中心和司法统计局利用《2013年全国犯罪受害调查学校犯罪补编》收集。样本包括4939名年龄在12-18岁之间的人。LCA得出了四类解决方案:a)“非受害者”(N=4,274), b)“传统受害者”(N=486), c)“网络受害者”(N=107), d)“传统受害者和网络受害者”(N=72)。这些发现使从业人员了解了青少年群体中最普遍的受害类型,并有助于识别有受害风险的个人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信