Vectorized fingerprint representation using Minutiae Relation Code

N. Abe, Takashi Shinzaki
{"title":"Vectorized fingerprint representation using Minutiae Relation Code","authors":"N. Abe, Takashi Shinzaki","doi":"10.1109/ICB.2015.7139103","DOIUrl":null,"url":null,"abstract":"Minutiae-based vector representation algorithms have been proposed, which allow us not only to speed up matching tasks, but also to easily apply for various template protection techniques, such as Fuzzy Vault, Fuzzy Commitment, and BioHashing. In this paper, we propose a new vectorized fingerprint descriptor called Minutiae Relation Code(MRC), which consists of a set of vector-represented minutiae relation information between arbitrary minutiae. We also evaluate authentication performances using FVC2002 Database(DB1, DB2, DB3, DB4) and we show 0.82% Equal Error Rate(EER) in DB1, 0.82% in DB2, 2.71% in DB3, and 1.49% in DB4.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Minutiae-based vector representation algorithms have been proposed, which allow us not only to speed up matching tasks, but also to easily apply for various template protection techniques, such as Fuzzy Vault, Fuzzy Commitment, and BioHashing. In this paper, we propose a new vectorized fingerprint descriptor called Minutiae Relation Code(MRC), which consists of a set of vector-represented minutiae relation information between arbitrary minutiae. We also evaluate authentication performances using FVC2002 Database(DB1, DB2, DB3, DB4) and we show 0.82% Equal Error Rate(EER) in DB1, 0.82% in DB2, 2.71% in DB3, and 1.49% in DB4.
基于细节关系码的指纹矢量化表示
已经提出了基于细节的向量表示算法,它不仅可以加快匹配任务,而且可以很容易地应用各种模板保护技术,如模糊保险库、模糊承诺和生物哈希。本文提出了一种新的矢量化指纹描述符,称为细节关系码(MRC),它由任意细节之间的一组向量表示的细节关系信息组成。我们还使用FVC2002数据库(DB1、DB2、DB3、DB4)对身份验证性能进行了评估,结果显示,DB1的等错误率(EER)为0.82%,DB2为0.82%,DB3为2.71%,DB4为1.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信