Categories of Nets

J. Baez, F. Genovese, J. Master, Michael Shulman
{"title":"Categories of Nets","authors":"J. Baez, F. Genovese, J. Master, Michael Shulman","doi":"10.1109/LICS52264.2021.9470566","DOIUrl":null,"url":null,"abstract":"We present a unified framework for Petri nets and various variants, such as pre-nets and Kock’s whole-grain Petri nets. Our framework is based on a less well-studied notion that we call Σ-nets, which allow fine-grained control over whether each transition behaves according to the collective or individual token philosophy. We describe three forms of execution semantics in which pre-nets generate strict monoidal categories, Σ-nets (including whole-grain Petri nets) generate symmetric strict monoidal categories, and Petri nets generate commutative monoidal categories, all by left adjoint functors. We also construct adjunctions relating these categories of nets to each other, in particular showing that all kinds of net can be embedded in the unifying category of Σ-nets, in a way that commutes coherently with their execution semantics.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We present a unified framework for Petri nets and various variants, such as pre-nets and Kock’s whole-grain Petri nets. Our framework is based on a less well-studied notion that we call Σ-nets, which allow fine-grained control over whether each transition behaves according to the collective or individual token philosophy. We describe three forms of execution semantics in which pre-nets generate strict monoidal categories, Σ-nets (including whole-grain Petri nets) generate symmetric strict monoidal categories, and Petri nets generate commutative monoidal categories, all by left adjoint functors. We also construct adjunctions relating these categories of nets to each other, in particular showing that all kinds of net can be embedded in the unifying category of Σ-nets, in a way that commutes coherently with their execution semantics.
网的分类
我们提出了一个统一的框架Petri网和各种变体,如预网和Kock的全谷物Petri网。我们的框架基于我们称之为Σ-nets的研究较少的概念,它允许细粒度地控制每个转换是根据集体还是单独的令牌哲学进行行为。我们描述了三种形式的执行语义,其中预网生成严格单一性范畴,Σ-nets(包括全粒Petri网)生成对称严格单一性范畴,Petri网生成交换单一性范畴,所有这些都是通过左伴随泛子。我们还构建了将这些类别的网络相互关联的修饰词,特别是表明所有类型的网络都可以嵌入到Σ-nets的统一类别中,以一种与其执行语义一致的方式进行交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信