Optimal DER Sizing Using Microgrid Design Tool Integrating Model Predictive Control Based Energy Management - A Case Study

A. Anwar, P. Beguery, P. Pflaum, Jackie Huynh, J. Friedman
{"title":"Optimal DER Sizing Using Microgrid Design Tool Integrating Model Predictive Control Based Energy Management - A Case Study","authors":"A. Anwar, P. Beguery, P. Pflaum, Jackie Huynh, J. Friedman","doi":"10.1109/ECCE.2018.8557718","DOIUrl":null,"url":null,"abstract":"We present the results of a case-study analysis for optimal sizing of a battery energy storage system (BESS), photovoltaic and/or genset (or cogeneration unit) using a recently developed microgrid design tool (MGDT) which integrates advanced energy management algorithm, including MPC (Model Predictive Control) approach embedded into the optimization engine. MPC algorithm is based on the resolution of an optimization problem that uses the variable electric tariff rates (for both energy and demand), the predicted load, and distributed energy resources production profiles to minimize the cost function over a time horizon (typically 24-hours) with respect to optimal energy profile results. This Matlab Simulink based tool was able to produce comparative results to indicate battery-autonomy and how the battery design impacts the cost when the microgrid operates in grid connected mode. The analyzed KPIs were: renewable penetration ratio, yearly cost for utility grid, cash flow on the full project lifetime.","PeriodicalId":415217,"journal":{"name":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2018.8557718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present the results of a case-study analysis for optimal sizing of a battery energy storage system (BESS), photovoltaic and/or genset (or cogeneration unit) using a recently developed microgrid design tool (MGDT) which integrates advanced energy management algorithm, including MPC (Model Predictive Control) approach embedded into the optimization engine. MPC algorithm is based on the resolution of an optimization problem that uses the variable electric tariff rates (for both energy and demand), the predicted load, and distributed energy resources production profiles to minimize the cost function over a time horizon (typically 24-hours) with respect to optimal energy profile results. This Matlab Simulink based tool was able to produce comparative results to indicate battery-autonomy and how the battery design impacts the cost when the microgrid operates in grid connected mode. The analyzed KPIs were: renewable penetration ratio, yearly cost for utility grid, cash flow on the full project lifetime.
利用微电网设计工具集成基于模型预测控制的能量管理优化DER规模-一个案例研究
我们使用最近开发的微电网设计工具(MGDT)对电池储能系统(BESS)、光伏和/或发电机组(或热电联产机组)的最佳尺寸进行了案例研究分析,该工具集成了先进的能源管理算法,包括嵌入优化引擎的MPC(模型预测控制)方法。MPC算法是基于一个优化问题的解决方案,该问题使用可变电价(能源和需求)、预测负荷和分布式能源生产概况来最小化一段时间内(通常是24小时)的成本函数,以获得最佳能源概况结果。这个基于Matlab Simulink的工具能够产生比较结果,以表明电池自主性,以及当微电网在并网模式下运行时,电池设计如何影响成本。分析的kpi是:可再生能源渗透率,公用电网的年度成本,整个项目生命周期的现金流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信