Pierre Boutillier, Aurélie Faure de Pebeyre, Jérôme Feret
{"title":"Proving the Absence of Unbounded Polymers in Rule-based Models","authors":"Pierre Boutillier, Aurélie Faure de Pebeyre, Jérôme Feret","doi":"10.1016/j.entcs.2020.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Rule-based languages, such as Kappa and BNGL, allow for the description of very combinatorial models of interactions between proteins. A huge (when not infinite) number of different kinds of bio-molecular compounds may arise due to proteins with multiple binding and phosphorylation sites. Knowing beforehand whether a model may involve an infinite number of different kinds of bio-molecular compounds is crucial for the modeller. On the first hand, having an infinite number of kinds of bio-molecular compounds is sometimes a hint for modelling flaws: forgetting to specify the conflicts among binding rules is a common mistake. On the second hand, it impacts the choice of the semantics for the models (among stochastic, differential, hybrid).</p><p>In this paper, we introduce a data-structure to abstract the potential unbounded polymers that may be formed in a rule-based model. This data-structure is a graph, the nodes and the edges of which are labelled with patterns. By construction, every potentially unbounded polymer is associated to at least one cycle in that graph. This data-structure has two main advantages. Firstly, as opposed to site-graphs, one can reason about cycles without enumerating them (by the means of Tarjan's algorithm for detecting strongly connected components). Secondly, this data-structures may be combined easily with information coming from additional reachability analysis: the edges that are labelled with an overlap that is proved unreachable in the model may be safely discarded.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"350 ","pages":"Pages 33-56"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2020.06.003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157106612030030X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Rule-based languages, such as Kappa and BNGL, allow for the description of very combinatorial models of interactions between proteins. A huge (when not infinite) number of different kinds of bio-molecular compounds may arise due to proteins with multiple binding and phosphorylation sites. Knowing beforehand whether a model may involve an infinite number of different kinds of bio-molecular compounds is crucial for the modeller. On the first hand, having an infinite number of kinds of bio-molecular compounds is sometimes a hint for modelling flaws: forgetting to specify the conflicts among binding rules is a common mistake. On the second hand, it impacts the choice of the semantics for the models (among stochastic, differential, hybrid).
In this paper, we introduce a data-structure to abstract the potential unbounded polymers that may be formed in a rule-based model. This data-structure is a graph, the nodes and the edges of which are labelled with patterns. By construction, every potentially unbounded polymer is associated to at least one cycle in that graph. This data-structure has two main advantages. Firstly, as opposed to site-graphs, one can reason about cycles without enumerating them (by the means of Tarjan's algorithm for detecting strongly connected components). Secondly, this data-structures may be combined easily with information coming from additional reachability analysis: the edges that are labelled with an overlap that is proved unreachable in the model may be safely discarded.
期刊介绍:
ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.