Nonlinear system identification using optimally selected Laguerre filter banks

Arne G. Dankers, D. Westwick
{"title":"Nonlinear system identification using optimally selected Laguerre filter banks","authors":"Arne G. Dankers, D. Westwick","doi":"10.1109/ACC.2006.1656574","DOIUrl":null,"url":null,"abstract":"A system's Volterra kernels may be estimated by identifying a Wiener-Bose model consisting of a bank of discrete Laguerre filters followed by a multiple input polynomial. This projects the kernels onto a reduced-order basis formed by the impulse responses of the Laguerre filters, dramatically reducing the number of estimated parameters, but requiring the a priori selection of two tuning parameters: a decay parameter that defines the Laguerre filters, and the number of filters in the bank. In applications to linear system identification, these tuning parameters can be selected automatically, using either an iterative optimization or an analytical solution. In this paper, both the iterative and analytical techniques are derived for the nonlinear case, and applied to the identification of Wiener-Bose models. A simulation study is used to evaluate the performance of the proposed algorithms","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1656574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A system's Volterra kernels may be estimated by identifying a Wiener-Bose model consisting of a bank of discrete Laguerre filters followed by a multiple input polynomial. This projects the kernels onto a reduced-order basis formed by the impulse responses of the Laguerre filters, dramatically reducing the number of estimated parameters, but requiring the a priori selection of two tuning parameters: a decay parameter that defines the Laguerre filters, and the number of filters in the bank. In applications to linear system identification, these tuning parameters can be selected automatically, using either an iterative optimization or an analytical solution. In this paper, both the iterative and analytical techniques are derived for the nonlinear case, and applied to the identification of Wiener-Bose models. A simulation study is used to evaluate the performance of the proposed algorithms
非线性系统辨识使用最优选择的拉盖尔滤波器组
系统的Volterra核可以通过识别由一组离散拉盖尔滤波器和一个多输入多项式组成的维纳-玻色模型来估计。这将核投影到由拉盖尔滤波器的脉冲响应形成的降阶基上,极大地减少了估计参数的数量,但需要先验地选择两个调谐参数:定义拉盖尔滤波器的衰减参数和库中的滤波器数量。在线性系统识别的应用中,可以使用迭代优化或解析解自动选择这些调谐参数。本文推导了非线性情况下的迭代法和解析法,并将其应用于维纳-玻色模型的辨识。通过仿真研究对所提算法的性能进行了评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信