N. Tuan, P. S. Dong, L. T. Thanh, Nguyen Cong Thang, Yang Keun Hyeok
{"title":"Mix design of high-volume fly ash ultra high performance concrete","authors":"N. Tuan, P. S. Dong, L. T. Thanh, Nguyen Cong Thang, Yang Keun Hyeok","doi":"10.31814/stce.huce(nuce)2021-15(4)-17","DOIUrl":null,"url":null,"abstract":"The addition of supplementary cementitious materials (SCMs) to replace cement, especially with a high volume (> 50%), is an effective way to reduce the environmental impact due to the CO2 emissions generated in the production of ultra-high performance concrete (UHPC). Unfortunately, no official guidelines of UHPC using a high volume of SCMs have been published up to now. This paper proposes a new method of mix design for UHPC using high volume fly ash (HVFA), that is referred to the particle packing optimization of the Compressive Packing Model proposed by F. de Larrard. This proposed method also considers the heat treatment curing duration to maximize the compressive strength of HVFA UHPC. The experimental results using this proposed mix design method show that the optimum fly ash content of 50 wt.% of binder can be used to produce HVFA UHPC with a compressive strength of over 120 MPa and 150 MPa under standard curing and heat treatment, respectively. Moreover, the embodied CO2 emissions of UHPC reduces 56.4% with addition of 50% FA.","PeriodicalId":387908,"journal":{"name":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31814/stce.huce(nuce)2021-15(4)-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The addition of supplementary cementitious materials (SCMs) to replace cement, especially with a high volume (> 50%), is an effective way to reduce the environmental impact due to the CO2 emissions generated in the production of ultra-high performance concrete (UHPC). Unfortunately, no official guidelines of UHPC using a high volume of SCMs have been published up to now. This paper proposes a new method of mix design for UHPC using high volume fly ash (HVFA), that is referred to the particle packing optimization of the Compressive Packing Model proposed by F. de Larrard. This proposed method also considers the heat treatment curing duration to maximize the compressive strength of HVFA UHPC. The experimental results using this proposed mix design method show that the optimum fly ash content of 50 wt.% of binder can be used to produce HVFA UHPC with a compressive strength of over 120 MPa and 150 MPa under standard curing and heat treatment, respectively. Moreover, the embodied CO2 emissions of UHPC reduces 56.4% with addition of 50% FA.