Part-aware Prototypical Graph Network for One-shot Skeleton-based Action Recognition

Tailin Chen, Desen Zhou, Jian Wang, Shidong Wang, Qian He, Chuanyan Hu, Errui Ding, Yuanyuan Guan, Xuming He
{"title":"Part-aware Prototypical Graph Network for One-shot Skeleton-based Action Recognition","authors":"Tailin Chen, Desen Zhou, Jian Wang, Shidong Wang, Qian He, Chuanyan Hu, Errui Ding, Yuanyuan Guan, Xuming He","doi":"10.1109/FG57933.2023.10042671","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of one-shot skeleton-based action recognition, which poses unique challenges in learning transferable representation from base classes to novel classes, particularly for fine-grained actions. Existing meta-learning frameworks typically rely on the body-level representations in spatial dimension, which limits the generalisation to capture subtle visual differences in the fine-grained label space. To overcome the above limitation, we propose a part-aware prototypical representation for one-shot skeleton-based action recognition. Our method captures skeleton motion patterns at two distinctive spatial levels, one for global contexts among all body joints, referred to as body level, and the other attends to local spatial regions of body parts, referred to as the part level. We also devise a class-agnostic attention mechanism to highlight important parts for each action class. Specifically, we develop a part-aware prototypical graph network consisting of three modules: a cascaded embedding module for our dual-level modelling, an attention-based part fusion module to fuse parts and generate part-aware prototypes, and a matching module to perform classification with the part-aware representations. We demonstrate the effectiveness of our method on two public skeleton-based action recognition datasets: NTU RGB+D 120 and NW-UCLA.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we study the problem of one-shot skeleton-based action recognition, which poses unique challenges in learning transferable representation from base classes to novel classes, particularly for fine-grained actions. Existing meta-learning frameworks typically rely on the body-level representations in spatial dimension, which limits the generalisation to capture subtle visual differences in the fine-grained label space. To overcome the above limitation, we propose a part-aware prototypical representation for one-shot skeleton-based action recognition. Our method captures skeleton motion patterns at two distinctive spatial levels, one for global contexts among all body joints, referred to as body level, and the other attends to local spatial regions of body parts, referred to as the part level. We also devise a class-agnostic attention mechanism to highlight important parts for each action class. Specifically, we develop a part-aware prototypical graph network consisting of three modules: a cascaded embedding module for our dual-level modelling, an attention-based part fusion module to fuse parts and generate part-aware prototypes, and a matching module to perform classification with the part-aware representations. We demonstrate the effectiveness of our method on two public skeleton-based action recognition datasets: NTU RGB+D 120 and NW-UCLA.
基于骨架的一次性动作识别的部件感知原型图网络
在本文中,我们研究了基于一次骨架的动作识别问题,该问题在学习从基类到新类的可转移表示方面提出了独特的挑战,特别是对于细粒度的动作。现有的元学习框架通常依赖于空间维度上的身体级表示,这限制了在细粒度标签空间中捕捉细微视觉差异的泛化。为了克服上述限制,我们提出了一种基于一次性骨架的动作识别的部分感知原型表示。我们的方法在两个不同的空间水平上捕获骨骼运动模式,一个用于所有身体关节的全局上下文,称为身体水平,另一个关注身体部位的局部空间区域,称为部分水平。我们还设计了一个与类无关的注意机制,以突出每个操作类的重要部分。具体来说,我们开发了一个由三个模块组成的零件感知原型图网络:用于双层建模的级联嵌入模块,用于融合零件并生成零件感知原型的基于注意力的零件融合模块,以及用于使用零件感知表示进行分类的匹配模块。我们在NTU RGB+ d120和NW-UCLA两个基于骨架的公共动作识别数据集上证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信