Reducing Dimensionality of Variables for a Classification Problem: Fraud Detection

P. Shiguihara-Juárez, Nils Murrugarra-Llerena
{"title":"Reducing Dimensionality of Variables for a Classification Problem: Fraud Detection","authors":"P. Shiguihara-Juárez, Nils Murrugarra-Llerena","doi":"10.1109/SHIRCON48091.2019.9024863","DOIUrl":null,"url":null,"abstract":"Fraud detection can be considered as a classification task since we can use datasets with labelled instances as fraud cases and legal cases. Although, many classifiers were applied to this problem, the data pre-processing related to the reduction of values of each variable is an uncommon approach. We explore a method to reduce the cardinality of the variables in a dataset of fraud transaction to identify improvement in this classification problem. Our best result indicated an improvement of $+$ 31.8% in terms of F1-measure when we reduce the cardinality to detect fraud cases.","PeriodicalId":113450,"journal":{"name":"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHIRCON48091.2019.9024863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fraud detection can be considered as a classification task since we can use datasets with labelled instances as fraud cases and legal cases. Although, many classifiers were applied to this problem, the data pre-processing related to the reduction of values of each variable is an uncommon approach. We explore a method to reduce the cardinality of the variables in a dataset of fraud transaction to identify improvement in this classification problem. Our best result indicated an improvement of $+$ 31.8% in terms of F1-measure when we reduce the cardinality to detect fraud cases.
一个分类问题的降维变量:欺诈检测
欺诈检测可以被视为一项分类任务,因为我们可以使用带有标记实例的数据集作为欺诈案例和法律案例。尽管许多分类器被应用于这个问题,但与每个变量值的约简相关的数据预处理是一种不常见的方法。我们探索了一种减少欺诈交易数据集中变量的基数的方法,以识别该分类问题的改进。我们的最佳结果表明,当我们减少基数以检测欺诈案例时,f1度量的改进幅度为$+$ 31.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信