High precision position control by Cartesian trajectory feedback and connectionist inverse dynamics feedforward

D. Bassi, G. Bekey
{"title":"High precision position control by Cartesian trajectory feedback and connectionist inverse dynamics feedforward","authors":"D. Bassi, G. Bekey","doi":"10.1109/IJCNN.1989.118718","DOIUrl":null,"url":null,"abstract":"An optimal Cartesian trajectory determination coupled with a connectionist approach to perform the dynamics inversion is presented. This method uses a recurrent calculation of the optimal Cartesian trajectory function in order to drive the arm to the desired position and velocity in the desired time. Using this principle of dynamic optimality it is shown that it is possible to achieve the goal with an arbitrary precision even though the inverse dynamics transformation is only an approximation obtained by a neural network. The analysis of simulated control strategy shows that the relative position error for a start-stop movement follows a high inverse power law with respect to the number of feedback control steps. This result indicates that it is practical to control a manipulator to an arbitrary degree of precision by using a neural network whose transformation has a relatively low precision.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

An optimal Cartesian trajectory determination coupled with a connectionist approach to perform the dynamics inversion is presented. This method uses a recurrent calculation of the optimal Cartesian trajectory function in order to drive the arm to the desired position and velocity in the desired time. Using this principle of dynamic optimality it is shown that it is possible to achieve the goal with an arbitrary precision even though the inverse dynamics transformation is only an approximation obtained by a neural network. The analysis of simulated control strategy shows that the relative position error for a start-stop movement follows a high inverse power law with respect to the number of feedback control steps. This result indicates that it is practical to control a manipulator to an arbitrary degree of precision by using a neural network whose transformation has a relatively low precision.<>
采用笛卡尔轨迹反馈和连接逆动力学前馈实现高精度位置控制
提出了一种最优笛卡尔轨迹确定方法,并结合连接方法进行动力学反演。该方法采用循环计算最优的笛卡尔轨迹函数,以驱动手臂在所需的时间内达到所需的位置和速度。利用这一动态最优性原理表明,即使动力学逆变换只是由神经网络获得的近似,也可以实现任意精度的目标。仿真控制策略分析表明,启停运动的相对位置误差与反馈控制步数呈高反幂律关系。这一结果表明,利用神经网络对机械臂进行任意精度的控制是可行的,而神经网络的变换精度相对较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信