An adaptive strategy for improving the performance of genetic programming-based approaches to evolutionary testing

J. Ribeiro, M. Z. Rela, F. F. Vega
{"title":"An adaptive strategy for improving the performance of genetic programming-based approaches to evolutionary testing","authors":"J. Ribeiro, M. Z. Rela, F. F. Vega","doi":"10.1145/1569901.1570253","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive strategy for enhancing Genetic Programming-based approaches to automatic test case generation. The main contribution of this study is that of proposing an adaptive Evolutionary Testing methodology for promoting the introduction of relevant instructions into the generated test cases by means of mutation; the instructions from which the algorithm can choose are ranked, with their rankings being updated every generation in accordance to the feedback obtained from the individuals evaluated in the preceding generation. The experimental studies developed show that the adaptive strategy proposed improves the algorithm's efficiency considerably, while introducing a negligible computational overhead.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an adaptive strategy for enhancing Genetic Programming-based approaches to automatic test case generation. The main contribution of this study is that of proposing an adaptive Evolutionary Testing methodology for promoting the introduction of relevant instructions into the generated test cases by means of mutation; the instructions from which the algorithm can choose are ranked, with their rankings being updated every generation in accordance to the feedback obtained from the individuals evaluated in the preceding generation. The experimental studies developed show that the adaptive strategy proposed improves the algorithm's efficiency considerably, while introducing a negligible computational overhead.
一种改进基于遗传规划的进化测试方法性能的自适应策略
本文提出了一种自适应策略,以增强基于遗传规划的测试用例自动生成方法。本研究的主要贡献是提出了一种适应性进化测试方法,通过突变的方式将相关指令引入到生成的测试用例中;对算法可以选择的指令进行排序,每一代根据从前一代评估的个体获得的反馈更新它们的排名。实验研究表明,所提出的自适应策略大大提高了算法的效率,同时引入的计算开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信