FingerNet: An unified deep network for fingerprint minutiae extraction

Yao Tang, Fei Gao, Jufu Feng, Yuhang Liu
{"title":"FingerNet: An unified deep network for fingerprint minutiae extraction","authors":"Yao Tang, Fei Gao, Jufu Feng, Yuhang Liu","doi":"10.1109/BTAS.2017.8272688","DOIUrl":null,"url":null,"abstract":"Minutiae extraction is of critical importance in automated fingerprint recognition. Previous works on rolled/slap fingerprints failed on latent fingerprints due to noisy ridge patterns and complex background noises. In this paper, we propose a new way to design deep convolutional network combining domain knowledge and the representation ability of deep learning. In terms of orientation estimation, segmentation, enhancement and minutiae extraction, several typical traditional methods performed well on rolled/slap fingerprints are transformed into convolutional manners and integrated as an unified plain network. We demonstrate that this pipeline is equivalent to a shallow network with fixed weights. The network is then expanded to enhance its representation ability and the weights are released to learn complex background variance from data, while preserving end-to-end differentiability. Experimental results on NIST SD27 latent database and FVC 2004 slap database demonstrate that the proposed algorithm outperforms the state-of-the-art minutiae extraction algorithms. Code is made publicly available at: https://github.com/felixTY/FingerNet.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126

Abstract

Minutiae extraction is of critical importance in automated fingerprint recognition. Previous works on rolled/slap fingerprints failed on latent fingerprints due to noisy ridge patterns and complex background noises. In this paper, we propose a new way to design deep convolutional network combining domain knowledge and the representation ability of deep learning. In terms of orientation estimation, segmentation, enhancement and minutiae extraction, several typical traditional methods performed well on rolled/slap fingerprints are transformed into convolutional manners and integrated as an unified plain network. We demonstrate that this pipeline is equivalent to a shallow network with fixed weights. The network is then expanded to enhance its representation ability and the weights are released to learn complex background variance from data, while preserving end-to-end differentiability. Experimental results on NIST SD27 latent database and FVC 2004 slap database demonstrate that the proposed algorithm outperforms the state-of-the-art minutiae extraction algorithms. Code is made publicly available at: https://github.com/felixTY/FingerNet.
FingerNet:用于指纹细节提取的统一深度网络
指纹特征提取是指纹自动识别的关键。由于脊纹图案的噪声和背景噪声的复杂性,以往对卷纹/拍打指纹的研究在潜在指纹上失败。本文提出了一种结合领域知识和深度学习的表示能力来设计深度卷积网络的新方法。从方向估计、分割、增强和细节提取等方面,将几种典型的传统方法转化为卷积方式,整合成一个统一的平面网络。我们证明了这个管道相当于一个固定权重的浅网络。然后对网络进行扩展以增强其表示能力,并释放权重以从数据中学习复杂的背景方差,同时保持端到端可微性。在NIST SD27潜势数据库和FVC 2004拍打数据库上的实验结果表明,该算法优于目前最先进的细节提取算法。代码可以在https://github.com/felixTY/FingerNet上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信