Machine Learning-Based False Positive Software Vulnerability Analysis

Mohammad Shahid, Sunil Gupta, MS. Sofia Pillai
{"title":"Machine Learning-Based False Positive Software Vulnerability Analysis","authors":"Mohammad Shahid, Sunil Gupta, MS. Sofia Pillai","doi":"10.58260/j.iet.2202.0105","DOIUrl":null,"url":null,"abstract":"Measurements and fault data from an older software version were used to build the fault prediction model for the new release. When past fault data isn't available, it's a problem. The software industry's assessment of programme module failure rates without fault labels is a difficult task. Unsupervised learning can be used to build a software fault prediction model when module defect labels are not available. These techniques can help identify programme modules that are more prone to errors. One method is to make use of clustering algorithms. Software module failures can be predicted using unsupervised techniques such as clustering when fault labels are not available. Machine learning clustering-based software failure prediction is our approach to solving this complex problem.","PeriodicalId":156368,"journal":{"name":"Global Journal of Innovation and Emerging Technology","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Innovation and Emerging Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58260/j.iet.2202.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measurements and fault data from an older software version were used to build the fault prediction model for the new release. When past fault data isn't available, it's a problem. The software industry's assessment of programme module failure rates without fault labels is a difficult task. Unsupervised learning can be used to build a software fault prediction model when module defect labels are not available. These techniques can help identify programme modules that are more prone to errors. One method is to make use of clustering algorithms. Software module failures can be predicted using unsupervised techniques such as clustering when fault labels are not available. Machine learning clustering-based software failure prediction is our approach to solving this complex problem.
基于机器学习的误报软件漏洞分析
来自旧软件版本的测量和故障数据被用于为新版本构建故障预测模型。当过去的故障数据不可用时,这就是一个问题。软件行业在没有故障标签的情况下评估程序模块的故障率是一项艰巨的任务。当模块缺陷标签不可用时,无监督学习可用于构建软件故障预测模型。这些技术可以帮助识别更容易出错的程序模块。一种方法是利用聚类算法。在没有故障标签的情况下,可以使用诸如聚类之类的无监督技术来预测软件模块故障。基于机器学习聚类的软件故障预测是我们解决这个复杂问题的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信