{"title":"Performance of macro-scale molecular communications with sensor cleanse time","authors":"Siyi Wang, Weisi Guo, Song Qiu, M. McDonnell","doi":"10.1109/ICT.2014.6845140","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a molecular diffusion based communications link that conveys information on the macro-scale (several metres). The motivation is to apply molecular-based communications to challenging electromagnetic environments. We first derive a novel capture probability expression of a finite sized receiver. The paper then introduces the concept of time-aggregated molecular noise at the receiver as a function of the rate at which the sensor can self-cleanse. The resulting inter-symbol-interference is expressed as a function of the sensor cleanse time, and the performance metrics of bit error rate, throughput and round-trip-time are derived. The results show that the performance is very sensitive to the sensor cleanse time and the drift velocity. The paper concludes with recommendations on the design of a real communication link based on these findings and applies the concepts to a test-bed.","PeriodicalId":154328,"journal":{"name":"2014 21st International Conference on Telecommunications (ICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2014.6845140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In this paper, we consider a molecular diffusion based communications link that conveys information on the macro-scale (several metres). The motivation is to apply molecular-based communications to challenging electromagnetic environments. We first derive a novel capture probability expression of a finite sized receiver. The paper then introduces the concept of time-aggregated molecular noise at the receiver as a function of the rate at which the sensor can self-cleanse. The resulting inter-symbol-interference is expressed as a function of the sensor cleanse time, and the performance metrics of bit error rate, throughput and round-trip-time are derived. The results show that the performance is very sensitive to the sensor cleanse time and the drift velocity. The paper concludes with recommendations on the design of a real communication link based on these findings and applies the concepts to a test-bed.