Improved formulation of the IMU and MARG orientation gradient descent algorithm for motion tracking in human-machine interfaces

M. Admiraal, Samuel Wilson, R. Vaidyanathan
{"title":"Improved formulation of the IMU and MARG orientation gradient descent algorithm for motion tracking in human-machine interfaces","authors":"M. Admiraal, Samuel Wilson, R. Vaidyanathan","doi":"10.1109/MFI.2017.8170354","DOIUrl":null,"url":null,"abstract":"Wearable motion tracking systems are becoming increasingly popular in human-machine interfaces. For inertial measurement, it is vital to efficiently fuse inertial, gyroscopic, and magnetometer data for spatial orientation. We introduce a new algorithm for this fusion based on using gradient descent to correct for the integral error in calculating the orientation quaternion of a rotating body. The algorithm is an improved formulation of the well-known estimation of orientation using a gradient descent algorithm. The new formulation ensures that the gradient descent algorithm uses the steepest descent, resulting in a five order of magnitude increase in the precision of the calculated orientation quaternion. We have also converted the algorithm to use fixed point integers instead of floating point numbers to more than double the speed of the calculations on the types of processors used with Inertial Measurement Units (IMUs) and Magnetic, Angular Rate and Gravity sensors (MARGs). This enables the corrections to not only be faster than the original formulations, but also remain valid for a larger range of inputs. The improved efficiency and accuracy show significant potential for increasing the scope of inertial measurement in applications where low power or greater precision is necessary such as very small wearable or implantable systems.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1996 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Wearable motion tracking systems are becoming increasingly popular in human-machine interfaces. For inertial measurement, it is vital to efficiently fuse inertial, gyroscopic, and magnetometer data for spatial orientation. We introduce a new algorithm for this fusion based on using gradient descent to correct for the integral error in calculating the orientation quaternion of a rotating body. The algorithm is an improved formulation of the well-known estimation of orientation using a gradient descent algorithm. The new formulation ensures that the gradient descent algorithm uses the steepest descent, resulting in a five order of magnitude increase in the precision of the calculated orientation quaternion. We have also converted the algorithm to use fixed point integers instead of floating point numbers to more than double the speed of the calculations on the types of processors used with Inertial Measurement Units (IMUs) and Magnetic, Angular Rate and Gravity sensors (MARGs). This enables the corrections to not only be faster than the original formulations, but also remain valid for a larger range of inputs. The improved efficiency and accuracy show significant potential for increasing the scope of inertial measurement in applications where low power or greater precision is necessary such as very small wearable or implantable systems.
改进了人机界面运动跟踪中IMU和MARG方向梯度下降算法的表述
可穿戴式运动跟踪系统在人机界面中越来越受欢迎。对于惯性测量来说,有效地融合惯性、陀螺仪和磁力计数据进行空间定位是至关重要的。本文提出了一种新的融合算法,利用梯度下降法来修正旋转体方向四元数计算中的积分误差。该算法是使用梯度下降算法的著名的方向估计的改进公式。新公式确保梯度下降算法使用最陡下降,从而使计算方向四元数的精度提高了五个数量级。我们还将算法转换为使用定点整数而不是浮点数,以使使用惯性测量单元(imu)和磁、角速率和重力传感器(marg)的处理器类型的计算速度提高一倍以上。这使得修正不仅比原来的公式更快,而且对更大范围的输入仍然有效。在需要低功耗或更高精度的应用中,例如非常小的可穿戴或可植入系统,效率和精度的提高显示出增加惯性测量范围的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信