The Fewest Clues Problem

E. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, S. Aaronson
{"title":"The Fewest Clues Problem","authors":"E. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, S. Aaronson","doi":"10.4230/LIPIcs.FUN.2016.12","DOIUrl":null,"url":null,"abstract":"When analyzing the computational complexity of well-known puzzles, most papers consider the algorithmic challenge of solving a given instance of (a generalized form of) the puzzle. We take a different approach by analyzing the computational complexity of designing a \"good\" puzzle. We assume a puzzle maker designs part of an instance, but before publishing it, wants to ensure that the puzzle has a unique solution. Given a puzzle, we introduce the FCP (fewest clues problem) version of the problem: \n \nGiven an instance to a puzzle, what is the minimum number of clues we must add in order to make the instance uniquely solvable? \n \nWe analyze this question for the Nikoli puzzles Sudoku, Shakashaka, and Akari. Solving these puzzles is NP-complete, and we show their FCP versions are Sigma_2^P-complete. Along the way, we show that the FCP versions of 3SAT, 1-in-3SAT, Triangle Partition, Planar 3SAT, and Latin Square are all Sigma_2^P-complete. We show that even problems in P have difficult FCP versions, sometimes even Sigma_2^P-complete, though \"closed under cluing\" problems are in the (presumably) smaller class NP; for example, FCP 2SAT is NP-complete.","PeriodicalId":293763,"journal":{"name":"Fun with Algorithms","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fun with Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FUN.2016.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

When analyzing the computational complexity of well-known puzzles, most papers consider the algorithmic challenge of solving a given instance of (a generalized form of) the puzzle. We take a different approach by analyzing the computational complexity of designing a "good" puzzle. We assume a puzzle maker designs part of an instance, but before publishing it, wants to ensure that the puzzle has a unique solution. Given a puzzle, we introduce the FCP (fewest clues problem) version of the problem: Given an instance to a puzzle, what is the minimum number of clues we must add in order to make the instance uniquely solvable? We analyze this question for the Nikoli puzzles Sudoku, Shakashaka, and Akari. Solving these puzzles is NP-complete, and we show their FCP versions are Sigma_2^P-complete. Along the way, we show that the FCP versions of 3SAT, 1-in-3SAT, Triangle Partition, Planar 3SAT, and Latin Square are all Sigma_2^P-complete. We show that even problems in P have difficult FCP versions, sometimes even Sigma_2^P-complete, though "closed under cluing" problems are in the (presumably) smaller class NP; for example, FCP 2SAT is NP-complete.
最少线索问题
在分析众所周知的谜题的计算复杂性时,大多数论文考虑的是解决谜题的给定实例(广义形式)的算法挑战。我们通过分析设计一个“好”谜题的计算复杂性采取了不同的方法。我们假设谜题制作者设计了一个实例的一部分,但在发布它之前,他希望确保谜题有一个独特的解决方案。给定一个谜题,我们引入这个问题的FCP(最少线索问题)版本:给定一个谜题实例,为了使该实例唯一可解,我们必须添加的最少线索数量是多少?我们以数独、Shakashaka和Akari为例来分析这个问题。求解这些谜题是np完全的,我们证明了它们的FCP版本是Sigma_2^ p完全的。在此过程中,我们证明了3SAT、1-in-3SAT、三角分割、平面3SAT和拉丁正方形的FCP版本都是Sigma_2^ p完备的。我们证明了P中的偶数问题有困难的FCP版本,有时甚至是Sigma_2^P完全,尽管“在线索下封闭”的问题是在(大概)较小的NP类中;例如,FCP 2SAT是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信