Better understandability of prediction models: a case study for data-based road safety management system

Viera Anderková, F. Babič
{"title":"Better understandability of prediction models: a case study for data-based road safety management system","authors":"Viera Anderková, F. Babič","doi":"10.1109/CINTI53070.2021.9668314","DOIUrl":null,"url":null,"abstract":"The road safety management system aims to ensure a safe transport system for all road users. Analyses of data about traffic accidents can provide important knowledge to support relevant decision-makers or processes. This fact motivated our case study covering the analytical process over publicly available data about traffic accidents in England, Scotland, and Wales. Based on our previous experience with this dataset, we aimed not on the prediction models and their accuracy, but on their explanations for the end-users with limited knowledge from data mining, machine learning, or artificial intelligence. For this purpose, we improved the generated decision models with selected explainable methods like The Local Interpretable Model-Agnostic Explanation (LIME) and SHap Additive exPlanations (SHAP) values. The final visualizations show which attributes and to what extent they contribute to each type of accident.","PeriodicalId":340545,"journal":{"name":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI53070.2021.9668314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The road safety management system aims to ensure a safe transport system for all road users. Analyses of data about traffic accidents can provide important knowledge to support relevant decision-makers or processes. This fact motivated our case study covering the analytical process over publicly available data about traffic accidents in England, Scotland, and Wales. Based on our previous experience with this dataset, we aimed not on the prediction models and their accuracy, but on their explanations for the end-users with limited knowledge from data mining, machine learning, or artificial intelligence. For this purpose, we improved the generated decision models with selected explainable methods like The Local Interpretable Model-Agnostic Explanation (LIME) and SHap Additive exPlanations (SHAP) values. The final visualizations show which attributes and to what extent they contribute to each type of accident.
提高预测模型的可理解性:基于数据的道路安全管理系统案例研究
道路安全管理制度旨在确保所有道路使用者的安全运输系统。对交通事故数据的分析可以提供重要的知识,以支持相关的决策者或程序。这一事实促使我们对英格兰、苏格兰和威尔士的交通事故公开数据进行分析。根据我们之前对这个数据集的经验,我们的目标不是预测模型及其准确性,而是它们对数据挖掘、机器学习或人工智能知识有限的最终用户的解释。为此,我们选择了一些可解释的方法,如局部可解释模型不可知论解释(LIME)和SHap加性解释(SHap)值来改进生成的决策模型。最后的可视化显示了哪些属性以及它们在多大程度上导致了每种类型的事故。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信