Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array

D. Reardon, A. Zic, R. Shannon, G. Hobbs, M. Bailes, Valentina Di Marco, Agastya Kapur, Axl F. Rogers, E. Thrane, Jacob Askew, N. Bhat, A. Cameron, M. Curyło, W. Coles, S. Dai, B. Goncharov, M. Kerr, Atharva Kulkarni, Y. Levin, M. Lower, R. Manchester, R. Mandow, M. T. Miles, R. Nathan, S. Osłowski, C. Russell, R. Spiewak, Songbo Zhang, Xingjiang Zhu
{"title":"Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array","authors":"D. Reardon, A. Zic, R. Shannon, G. Hobbs, M. Bailes, Valentina Di Marco, Agastya Kapur, Axl F. Rogers, E. Thrane, Jacob Askew, N. Bhat, A. Cameron, M. Curyło, W. Coles, S. Dai, B. Goncharov, M. Kerr, Atharva Kulkarni, Y. Levin, M. Lower, R. Manchester, R. Mandow, M. T. Miles, R. Nathan, S. Osłowski, C. Russell, R. Spiewak, Songbo Zhang, Xingjiang Zhu","doi":"10.3847/2041-8213/acdd02","DOIUrl":null,"url":null,"abstract":"Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 yr. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise process. Represented as a strain spectrum hc=A(f/1yr−1)α , we measure A=3.1−0.9+1.3×10−15 and α = −0.45 ± 0.20, respectively (median and 68% credible interval). For a spectral index of α = −2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we recover an amplitude of A=2.04−0.22+0.25×10−15 . However, we demonstrate that the apparent signal strength is time-dependent, as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a process with α = −2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of p ≲ 0.02 (approx. 2σ). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acdd02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 yr. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise process. Represented as a strain spectrum hc=A(f/1yr−1)α , we measure A=3.1−0.9+1.3×10−15 and α = −0.45 ± 0.20, respectively (median and 68% credible interval). For a spectral index of α = −2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we recover an amplitude of A=2.04−0.22+0.25×10−15 . However, we demonstrate that the apparent signal strength is time-dependent, as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a process with α = −2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of p ≲ 0.02 (approx. 2σ). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.
用帕克斯脉冲星定时阵列寻找各向同性引力波背景
脉冲星定时阵列的目标是探测纳赫兹频率的引力波。GWs背景调制脉冲星到达时间,并表现为一个随机过程,与所有脉冲星共有,具有明显的空间相关性。在这里,我们描述了利用帕克斯脉冲星定时阵列(PPTA)第三次数据发布的30毫秒脉冲星的观测对各向同性随机引力波背景(GWB)的搜索,该观测历时18年。使用当前的贝叶斯推理技术,我们恢复并表征了共谱噪声过程。用应变谱hc= a (f/1yr - 1)α表示,我们分别测量到a =3.1−0.9+1.3×10−15和α =−0.45±0.20(中位数和68%可信区间)。对于α =−2/3的光谱指数,对应于吸入超大质量黑洞双星辐射的gw的各向同性背景,我们恢复了a =2.04−0.22+0.25×10−15的振幅。然而,我们证明了表观信号强度是时间相关的,因为我们的数据集的前半部分可以用来在A上放置一个上限,该上限与使用完整数据集推断的共谱幅度相张力。我们通过分层分析单个脉冲星对来搜索观测中的空间相关性,这也允许通过随机化脉冲星在天空中的位置来进行显著性验证。对于α = - 2/3的过程,我们测量了与GWB一致的空间相关性,估计的假警报概率为p > 0.02(约为0.03)。2σ)。PPTA的长授时基线和对南方脉冲星的访问将继续在国际脉冲星授时阵列中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信