Disparity-Based 3D Face Modeling for 3D Face Recognition

A. Ansari, M. Abdel-Mottaleb, M. Mahoor
{"title":"Disparity-Based 3D Face Modeling for 3D Face Recognition","authors":"A. Ansari, M. Abdel-Mottaleb, M. Mahoor","doi":"10.1109/ICIP.2006.312416","DOIUrl":null,"url":null,"abstract":"We present an automatic disparity-based approach for 3D face modeling, from two frontal and one profile view stereo images, for 3D face recognition applications. Once the images are captured, the algorithm starts by extracting selected 2D facial features from one of the frontal views and computes a dense disparity map from the two frontal images. We then align a low resolution 2D mesh model to the selected features, adjust some of its vertices along the profile line using the profile view, increase its triangular vertices to a higher resolution, and re-project them back on the frontal image. Using the coordinates of the re-projected vertices and their corresponding disparities, we capture and compute the 3D facial shape variations using stereo vision. The final result is a deformed 3D model specific to a given subject's face. Application of the model in 3D face recognition validates the algorithm and shows a promising 98 % recognition rate.","PeriodicalId":299355,"journal":{"name":"2006 International Conference on Image Processing","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2006.312416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present an automatic disparity-based approach for 3D face modeling, from two frontal and one profile view stereo images, for 3D face recognition applications. Once the images are captured, the algorithm starts by extracting selected 2D facial features from one of the frontal views and computes a dense disparity map from the two frontal images. We then align a low resolution 2D mesh model to the selected features, adjust some of its vertices along the profile line using the profile view, increase its triangular vertices to a higher resolution, and re-project them back on the frontal image. Using the coordinates of the re-projected vertices and their corresponding disparities, we capture and compute the 3D facial shape variations using stereo vision. The final result is a deformed 3D model specific to a given subject's face. Application of the model in 3D face recognition validates the algorithm and shows a promising 98 % recognition rate.
基于差异的三维人脸建模用于三维人脸识别
我们提出了一种基于自动差异的3D人脸建模方法,从两个正面和一个侧面视图立体图像,用于3D人脸识别应用。一旦图像被捕获,算法首先从其中一个正面视图中提取选定的2D面部特征,并从两个正面图像中计算密集的视差图。然后,我们将低分辨率2D网格模型与选定的特征对齐,使用轮廓视图沿轮廓线调整其一些顶点,将其三角形顶点增加到更高的分辨率,并将它们重新投影回正面图像上。利用重新投影顶点的坐标及其对应的差值,利用立体视觉捕捉和计算三维面部形状的变化。最终的结果是一个特定于给定受试者面部的变形3D模型。该模型在三维人脸识别中的应用验证了算法的有效性,显示出98%的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信