Learning from Data Streams Using Kernel Adaptive Filtering

S. García-Vega, Xiao-Jun Zeng, J. Keane
{"title":"Learning from Data Streams Using Kernel Adaptive Filtering","authors":"S. García-Vega, Xiao-Jun Zeng, J. Keane","doi":"10.2139/ssrn.3306245","DOIUrl":null,"url":null,"abstract":"A learning task is sequential if its data samples become available over time. Kernel adaptive filters (KAF) are sequential learning algorithms. There are two main challenges in KAF: (1) the lack of an effective method to determine the kernel-sizes in the online learning context; (2) how to tune the step-size parameter. We propose a framework for online prediction using KAF which does not require a predefined set of kernel-sizes; rather, the kernel-sizes are both created and updated in an online sequential way. Further, to improve convergence time, we propose an online technique to optimize the step-size parameter. The framework is tested on two real-world data sets, i.e., internet traffic and foreign exchange market. Results show that, without any specific hyperparameter tuning, our proposal converges faster to relatively low values of mean squared error and achieves better accuracy.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3306245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A learning task is sequential if its data samples become available over time. Kernel adaptive filters (KAF) are sequential learning algorithms. There are two main challenges in KAF: (1) the lack of an effective method to determine the kernel-sizes in the online learning context; (2) how to tune the step-size parameter. We propose a framework for online prediction using KAF which does not require a predefined set of kernel-sizes; rather, the kernel-sizes are both created and updated in an online sequential way. Further, to improve convergence time, we propose an online technique to optimize the step-size parameter. The framework is tested on two real-world data sets, i.e., internet traffic and foreign exchange market. Results show that, without any specific hyperparameter tuning, our proposal converges faster to relatively low values of mean squared error and achieves better accuracy.
使用核自适应滤波从数据流中学习
如果一个学习任务的数据样本随着时间的推移变得可用,那么它就是连续的。核自适应滤波器(KAF)是一种顺序学习算法。KAF存在两个主要挑战:(1)缺乏一种有效的方法来确定在线学习环境下的核大小;(2)如何调整步长参数。我们提出了一个使用KAF的在线预测框架,该框架不需要预定义的核大小集;相反,内核大小是以在线顺序的方式创建和更新的。此外,为了提高收敛时间,我们提出了一种在线优化步长参数的技术。该框架在两个真实世界的数据集上进行了测试,即互联网流量和外汇市场。结果表明,在没有任何特定的超参数调整的情况下,我们的方法可以更快地收敛到相对较低的均方误差值,并获得更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信