Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure

Li Zhang, B. Mukherjee, M. Ghosh, R. Wu
{"title":"Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure","authors":"Li Zhang, B. Mukherjee, M. Ghosh, R. Wu","doi":"10.1177/1471082006071841","DOIUrl":null,"url":null,"abstract":"A two-stage parametric Bayesian method is proposed to examine the association between a candidate gene and the occurrence of a disease after accounting for population substructure. This procedure, implemented via a Markov chain Monte Carlo numerical integration technique, first estimates the posterior probability of different unknown population substructures and then integrates this information into a disease-gene association model through the technique of Bayesian model averaging. The model relaxes certain assumptions of previous analyses and provides a unified computational framework to obtain an estimate of the log odds ratio parameter corresponding to the genetic factor after allowing for the allele frequencies to vary across subpopulations. The uncertainty in estimating the population substructure is taken into account while providing credible intervals for parameters in the disease-gene association model. Simulations on unmatched case-control studies that mimic an admixed Argentinean population are performed to demonstrate the statistical properties of our model. The method is also applied to a real data set coming from a genetic association study on obesity.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1471082006071841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A two-stage parametric Bayesian method is proposed to examine the association between a candidate gene and the occurrence of a disease after accounting for population substructure. This procedure, implemented via a Markov chain Monte Carlo numerical integration technique, first estimates the posterior probability of different unknown population substructures and then integrates this information into a disease-gene association model through the technique of Bayesian model averaging. The model relaxes certain assumptions of previous analyses and provides a unified computational framework to obtain an estimate of the log odds ratio parameter corresponding to the genetic factor after allowing for the allele frequencies to vary across subpopulations. The uncertainty in estimating the population substructure is taken into account while providing credible intervals for parameters in the disease-gene association model. Simulations on unmatched case-control studies that mimic an admixed Argentinean population are performed to demonstrate the statistical properties of our model. The method is also applied to a real data set coming from a genetic association study on obesity.
病例对照研究中遗传关联的贝叶斯模型:考虑未知的群体亚结构
在考虑种群亚结构后,提出了一种两阶段参数贝叶斯方法来检验候选基因与疾病发生之间的关系。该程序通过马尔可夫链蒙特卡罗数值积分技术实现,首先估计不同未知种群子结构的后验概率,然后通过贝叶斯模型平均技术将该信息整合到疾病基因关联模型中。该模型放宽了先前分析的某些假设,并提供了一个统一的计算框架,在允许等位基因频率在亚种群中变化后,获得与遗传因素对应的对数比值比参数的估计。在为疾病-基因关联模型的参数提供可信区间的同时,考虑了种群子结构估计的不确定性。在模拟混合阿根廷人口的无与伦比的病例对照研究中进行了模拟,以证明我们模型的统计特性。该方法也适用于来自肥胖遗传关联研究的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信