Agenda: Robust Personalized PageRanks in Evolving Graphs

Dingheng Mo, Siqiang Luo
{"title":"Agenda: Robust Personalized PageRanks in Evolving Graphs","authors":"Dingheng Mo, Siqiang Luo","doi":"10.1145/3459637.3482317","DOIUrl":null,"url":null,"abstract":"Given a source node s and a target node t in a graph G, the Personalized PageRank (PPR) from s to t is the probability of a random walk starting from s terminates at t. PPR is a classic measure of the relevance among different nodes in a graph, and has been applied in numerous real-world systems. However, existing techniques for PPR queries are not robust to dynamic real-world graphs, which typically have different evolving speeds. Their performance is significantly degraded either at a lower graph evolving rate (e.g., much more queries than updates) or a higher rate. To address the above deficiencies, we propose Agenda to efficiently process, with strong approximation guarantees, the single-source PPR (SSPPR) queries on dynamically evolving graphs with various evolving speeds. Compared with previous methods, Agenda has significantly better workload robustness, while ensuring the same result accuracy. Agenda also has theoretically-guaranteed small query and update costs. Experiments on up to billion-edge scale graphs show that Agenda significantly outperforms state-of-the-art methods for various query/update workloads, while maintaining better or comparable approximation accuracies.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Given a source node s and a target node t in a graph G, the Personalized PageRank (PPR) from s to t is the probability of a random walk starting from s terminates at t. PPR is a classic measure of the relevance among different nodes in a graph, and has been applied in numerous real-world systems. However, existing techniques for PPR queries are not robust to dynamic real-world graphs, which typically have different evolving speeds. Their performance is significantly degraded either at a lower graph evolving rate (e.g., much more queries than updates) or a higher rate. To address the above deficiencies, we propose Agenda to efficiently process, with strong approximation guarantees, the single-source PPR (SSPPR) queries on dynamically evolving graphs with various evolving speeds. Compared with previous methods, Agenda has significantly better workload robustness, while ensuring the same result accuracy. Agenda also has theoretically-guaranteed small query and update costs. Experiments on up to billion-edge scale graphs show that Agenda significantly outperforms state-of-the-art methods for various query/update workloads, while maintaining better or comparable approximation accuracies.
议程:进化图中的鲁棒个性化网页排名
给定图G中的源节点s和目标节点t,从s到t的个性化PageRank (PPR)是从s开始的随机游走在t处终止的概率。PPR是图中不同节点之间相关性的经典度量,已应用于许多实际系统中。然而,现有的PPR查询技术对于动态现实世界的图形并不健壮,这些图形通常具有不同的发展速度。它们的性能在较低的图演化率(例如,查询比更新多得多)或较高的图演化率下都会显著下降。为了解决上述不足,我们提出了一个Agenda,在强近似保证下,对不同演化速度的动态演化图进行单源PPR (SSPPR)查询的高效处理。与以往的方法相比,Agenda在保证结果准确性的前提下,显著提高了工作负载鲁棒性。从理论上讲,Agenda也保证了较小的查询和更新成本。在高达十亿边缘规模的图上进行的实验表明,对于各种查询/更新工作负载,Agenda的性能明显优于最先进的方法,同时保持更好或相当的近似精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信