A Sentence-BERT-based Model for Expressing Key Features of Hospital Web Logs

Tao Yang, MingYang Li, H. Deng, Junxiang Wang
{"title":"A Sentence-BERT-based Model for Expressing Key Features of Hospital Web Logs","authors":"Tao Yang, MingYang Li, H. Deng, Junxiang Wang","doi":"10.1109/AINIT59027.2023.10212603","DOIUrl":null,"url":null,"abstract":"Hospital web application log data contains a significant number of specialized terms, and there is a high degree of similarity in their expressions and content. This similarity often leads to a high false alarm rate in hospital network security detection. In this paper, we propose a SB-KFR model (Sentence-BERT-based Key Feature Representation) to tackle this problem. This model converts hospital web logs into feature vectors by extracting key features and performing vector transformation. In this paper, seven machine learning models are used to verify the feature vector. The experimental results demonstrate a reduction in false positives for hospital web application intrusion detection after applying the SB-KFR model to process the web logs.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hospital web application log data contains a significant number of specialized terms, and there is a high degree of similarity in their expressions and content. This similarity often leads to a high false alarm rate in hospital network security detection. In this paper, we propose a SB-KFR model (Sentence-BERT-based Key Feature Representation) to tackle this problem. This model converts hospital web logs into feature vectors by extracting key features and performing vector transformation. In this paper, seven machine learning models are used to verify the feature vector. The experimental results demonstrate a reduction in false positives for hospital web application intrusion detection after applying the SB-KFR model to process the web logs.
基于句子bert的医院网络日志关键特征表达模型
医院web应用日志数据中包含大量的专业术语,其表达和内容具有高度的相似性。这种相似性往往导致医院网络安全检测中虚警率高。在本文中,我们提出了一个基于句子bert的关键特征表示(SB-KFR)模型来解决这个问题。该模型通过提取关键特征并进行向量变换,将医院网络日志转换为特征向量。本文使用七个机器学习模型来验证特征向量。实验结果表明,应用SB-KFR模型对医院web应用入侵检测日志进行处理后,误报率有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信